402 research outputs found

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda

    Get PDF
    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case

    Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    Get PDF
    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the [email protected]; [email protected]

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms

    Incorporation of Local Structural Preference Potential Improves Fold Recognition

    Get PDF
    Fold recognition, or threading, is a popular protein structure modeling approach that uses known structure templates to build structures for those of unknown. The key to the success of fold recognition methods lies in the proper integration of sequence, physiochemical and structural information. Here we introduce another type of information, local structural preference potentials of 3-residue and 9-residue fragments, for fold recognition. By combining the two local structural preference potentials with the widely used sequence profile, secondary structure information and hydrophobic score, we have developed a new threading method called FR-t5 (fold recognition by use of 5 terms). In benchmark testings, we have found the consideration of local structural preference potentials in FR-t5 not only greatly enhances the alignment accuracy and recognition sensitivity, but also significantly improves the quality of prediction models

    Structural and Functional Roles of Coevolved Sites in Proteins

    Get PDF
    Understanding the residue covariations between multiple positions in protein families is very crucial and can be helpful for designing protein engineering experiments. These simultaneous changes or residue coevolution allow protein to maintain its overall structural-functional integrity while enabling it to acquire specific functional modifications. Despite the significant efforts in the field there is still controversy in terms of the preferable locations of coevolved residues on different regions of protein molecules, the strength of coevolutionary signal and role of coevolution in functional diversification.In this paper we study the scale and nature of residue coevolution in maintaining the overall functionality and structural integrity of proteins. We employed a large scale study to investigate the structural and functional aspects of coevolved residues. We found that the networks representing the coevolutionary residue connections within our dataset are in general of 'small-world' type as they have clustering coefficient values higher than random networks and also show smaller mean shortest path lengths similar and/or lower than random and regular networks. We also found that altogether 11% of functionally important sites are coevolved with any other sites. Active sites are found more frequently to coevolve with any other sites (15%) compared to protein (11%) and ligand (9%) binding sites. Metal binding and active sites are also found to be more frequently coevolved with other metal binding and active sites, respectively. Analysis of the coupling between coevolutionary processes and the spatial distribution of coevolved sites reveals that a high fraction of coevolved sites are located close to each other. Moreover, approximately 80% of charge compensatory substitutions within coevolved sites are found at very close spatial proximity (<or= 5A), pointing to the possible preservation of salt bridges in evolution.Our findings show that a noticeable fraction of functionally important sites undergo coevolution and also point towards compensatory substitutions as a probable coevolutionary mechanism within spatially proximal coevolved functional sites

    A multidisciplinary consensus on the morphological and functional responses to immunotherapy treatment

    Get PDF
    The implementation of immunotherapy has radically changed the treatment of oncological patients. Currently, immunotherapy is indicated in the treatment of patients with head and neck tumors, melanoma, lung cancer, bladder tumors, colon cancer, cervical cancer, breast cancer, Merkel cell carcinoma, liver cancer, leukemia and lymphomas. However, its efficacy is restricted to a limited number of cases. The challenge is, therefore, to identify which subset of patients would benefit from immunotherapy. To this end, the establishment of immunotherapy response criteria and predictive and prognostic biomarkers is of paramount interest. In this report, a group of experts of the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) provide an up-to-date review and a consensus guide on these issues
    corecore