7 research outputs found

    Biophysical Characterization and Simulation of Neocortical Layer 2/3 Pyramidal Neurons during Postnatal Development

    Get PDF
    Pyramidal neurons in layer 2/3 of the mammalian neocortex constitute the most abundant neocortical cell type, yet their biophysical properties are still poorly understood. In this thesis, fundamental properties of layer 2/3 pyramidal neurons of 1-to-6-weeks old rats were investigated with an approach combining in vitro electrophysiological characterization, reconstruction of cell morphologies, and numerical computer simulations. A specific goal was to identify ion channel mechanisms underlying the sub-threshold integrative properties of these cells and to reveal the developmental profile of channel expression. A simulated annealing algorithm was employed to numerically simulate layer 2/3 neurons and to generate valid models of varying complexity and constrained by experimental data. At all ages, layer 2/3 pyramidal neurons showed prominent anomalous rectification which could be attributed to inward-rectifier potassium (KIR) channels based both on pharmacological experiments and modeling. In contrast to other types of pyramidal neurons little hyperpolarization-activated current (Ih) was found. While morphological development essentially was complete at postnatal week 2, biophysical properties continued to change until week 4-6. In particular, input resistance strongly decreased with age, rendering the cells less excitable as the cortical network matures. Computer simulations showed that these properties will have a large impact on the integration of synaptic inputs during ongoing spontaneous activity in vivo. It is concluded, that layer 2/3 pyramidal neurons possess biophysical properties distinct from other pyramidal cells and that the prolonged postnatal development is critical for shaping synaptic integration and neocortical circuit activity in vivo

    Inhibition of activity of GABA transporter GAT1 by δ-opioid receptor

    Get PDF
    Analgesia is a well-documented effect of acupuncture. A critical role in pain sensation plays the nervous system, including the GABAergic system and opioid receptor (OR) activation. Here we investigated regulation of GABA transporter GAT1 by δOR in rats and in Xenopus oocytes. Synaptosomes of brain from rats chronically exposed to opiates exhibited reduced GABA uptake, indicating that GABA transport might be regulated by opioid receptors. For further investigation we have expressed GAT1 of mouse brain together with mouse δOR and μOR in Xenopus oocytes. The function of GAT1 was analyzed in terms of Na(+)-dependent [(3)H]GABA uptake as well as GAT1-mediated currents. Coexpression of δOR led to reduced number of fully functional GAT1 transporters, reduced substrate translocation, and GAT1-mediated current. Activation of δOR further reduced the rate of GABA uptake as well as GAT1-mediated current. Coexpression of μOR, as well as μOR activation, affected neither the number of transporters, nor rate of GABA uptake, nor GAT1-mediated current. Inhibition of GAT1-mediated current by activation of δOR was confirmed in whole-cell patch-clamp experiments on rat brain slices of periaqueductal gray. We conclude that inhibition of GAT1 function will strengthen the inhibitory action of the GABAergic system and hence may contribute to acupuncture-induced analgesia
    corecore