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Biophysikalische Charakterisierung und Simulation von Schicht 2/3 
Pyramidenzellen in der Hirnrinde während der postnatalen Entwicklung 

Pyramidenzellen der Schicht 2/3 sind der häufigste Zelltyp in der Hirnrinde (Neokortex) von 
Säugetieren. Trotzdem ist über ihre biophysikalischen Eigenschaften bisher wenig bekannt. In 
dieser Doktorarbeit wurden grundlegende Eigenschaften von Pyramidenzellen der Schicht 2/3 
von 1 bis 6 Wochen alten Ratten untersucht. Hierzu wurden elektrophysiologische Messungen in 
vitro mit morphologischen Rekonstruktionen und numerischen Rechnersimulationen kombiniert. 
Insbesondere sollten in dieser Arbeit die Ionenkanäle, die den unterschwelligen integrativen 
Eigenschaften dieser Zellen zugrundeliegen, und die Entwicklung der Kanalexpression bestimmt 
werden. Ein simulierter Erstarrungs-Algorithmus wurde eingesetzt um valide Modelle 
unterschiedlichen Komplexitätsgrades zur Reproduktion experimenteller Daten zu erstellen. 
 Zu allen Altern zeigten Schicht 2/3 Pyramidenzellen deutliche anomale Rektifizierung, die 
aufgrund pharmakologischer Experimente und aufgrund Simulationen auf einwärts-rektifizierende 
Kaliumkanäle (KIR) zurückzuführen war. Nur ein geringer hyperpolarisations-aktivierter Strom (Ih) 
wurde gefunden, sehr im Gegensatz zu anderen Pyramidenzelltypen. Während morphologische 
Veränderungen bis zur zweiten postnatalen Woche abgeschlossen waren, änderten sich die 
biophysikalischen Eigenschaften weiterhin bis Woche 4-6. Insbesondere der Eingangswiderstand 
sank mit steigendem Alter, wodurch die Zellen im reifenden kortikalen Netzwerk weniger erregbar 
wurden. In Computersimulationen hatten diese Eigenschaften starken Einfluss auf die Integration 
synaptischen Eingangs während spontaner in vivo Aktivität. Daraus kann geschlossen werden, 
dass Schicht 2/3 Pyramidenzellen biophysikalische Eigenschaften besitzen, die sich deutlich von 
denen anderer Pyramidenzelltypen unterscheiden, und dass die verhältnismäßig lange 
postnatale Entwicklung kritisch für die Entwicklung synaptischer Integration und kortikaler 
Aktivität in vivo ist. 
 
 
 

Biophysical Characterization and Simulation of Neocortical Layer 2/3 
Pyramidal Neurons during Postnatal Development 

Pyramidal neurons in layer 2/3 of the mammalian neocortex constitute the most abundant 
neocortical cell type, yet their biophysical properties are still poorly understood. In this thesis, 
fundamental properties of layer 2/3 pyramidal neurons of 1-to-6-weeks old rats were investigated 
with an approach combining in vitro electrophysiological characterization, reconstruction of cell 
morphologies, and numerical computer simulations. A specific goal was to identify ion channel 
mechanisms underlying the sub-threshold integrative properties of these cells and to reveal the 
developmental profile of channel expression. A simulated annealing algorithm was employed to 
numerically simulate layer 2/3 neurons and to generate valid models of varying complexity and 
constrained by experimental data. 
 At all ages, layer 2/3 pyramidal neurons showed prominent anomalous rectification which 
could be attributed to inward-rectifier potassium (KIR) channels based both on pharmacological 
experiments and modeling. In contrast to other types of pyramidal neurons little hyperpolarization-
activated current (Ih) was found. While morphological development essentially was complete at 
postnatal week 2, biophysical properties continued to change until week 4-6. In particular, input 
resistance strongly decreased with age, rendering the cells less excitable as the cortical network 
matures. Computer simulations showed that these properties will have a large impact on the 
integration of synaptic inputs during ongoing spontaneous activity in vivo. It is concluded, that 
layer 2/3 pyramidal neurons possess biophysical properties distinct from other pyramidal cells 
and that the prolonged postnatal development is critical for shaping synaptic integration and 
neocortical circuit activity in vivo.  
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1  Introduction 
During the last century, a growing number of scientists from all disciplines have 
become interested in the field of biological neuroscience. Besides more practical 
results like the better understanding of neurological and mental diseases on the 
cellular and molecular level, the ultimate driving force for the neuroscientific 
research field is the expectation that by understanding the biological mechanisms 
in the brain, one might one day understand what makes the human being “tick”, 
i.e. what the biological basis is of emotions, percepts, attention, qualia and 
consciousness. Paradoxically, the object of interest –the human brain – is the 
very organ that allows the scientist to perform his research and in the end the 
question remains whether the human brain will be able to truly understand itself. 

 For ethical considerations, of course, experiments on the cellular level 
cannot simply be performed in humans (with the few exceptions of patients 
undergoing brain surgery). Thus, most knowledge about neuronal mechanisms in 
the brain has been inferred from central nervous systems (CNS) of other 
organisms. Depending on the question at hand, the complexity of the model 
organism may vary, ranging from very simple animals like the fruit fly Drosophila 
melanogaster, the sea snail Aplysia californica and the worm Caernorhabditis 
elegans over amphibians like Xenopus laevis, fish (zebrafish) and birds (zebra 
finch) to mammals up to our next evolutionary relatives, the primate monkey. For 
the purpose of this study, the rat (Rattus norvegicus) with its well characterized 
CNS has been chosen as the appropriate model system to investigate the 
mammalian brain in general and a specific cell type in the neocortex in particular. 

 In this introductory part of the thesis an overview of the research topic will 
be given. During the following chapters, neuroscientific terms will be explained en 
passant for those readers who are not familiar with the topic’s terminology. A list 
of abbreviations can be found at the end of this thesis. 

 

 

1.1  The mammalian neocortex 
The neocortex is a structure common to all mammals although similar structures 
are at least partly present in other vertebrates. It can also be considered the brain 
structure defining us as humans since homo sapiens seems to be the animal with 
the best developed neocortex in respect to cortical versus total brain volume. The 
term neocortex stems from its being relatively young in evolutionary terms. 

1 



1  Introduction 

 
Fig. 1.1  Historical drawing of the human brain (1543, by Andreas Vesalius). Taken from 
Squire et al., 2003. 

 

 

1.1.1 Laminar organization 

In the mammalian brain, the neocortex is a shell-like structure of a few 
millimeters thickness engulfing most of the cerebrum. In humans as well as in 
other primates it is heavily folded, with its outer appearance reminiscent of a 
walnut. The structure of the surface, although appearing random, is conserved 
from brain to brain within a species. Anatomical and functional studies of the 
neocortex date back to the works of Santiago Ramon y Cajal (Nobel prize in 
1906), who described cellular structures and anatomical organization of cortical 
tissue in great detail (reprinted in Ramon y Cajal, 1995). 

 The neocortex contains a variety of cell types. A common feature of 
neurons is their general structure: From a cell body (soma) several thin 
protrusions stretch out into the surrounding tissue. These thin structures of which 
neurons often grow several are termed dendrites. In addition, each neuron 
possesses one axon, which establishes the connections to target neurons. While 
dendrites stretch out from the soma a few millimeters at most, axons can become 
meters in length. Both structures often show pronounced arborizations, which 
have characteristic morphological features in different neuronal subtypes and 
thus allow distinguishing cell types.  
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1  Introduction 

Neocortex comprises six laminar layers 

In stained tissue a clear organization of the neocortex into layers with different 
cell types and of different packing densities is obvious. In most cortical areas 
there are six layers (Brodmann, 1909). Nomenclature simply numbers them, 
starting at the pial surface of the cortex. Layer 1 (L1), the most superficial layer, 
contains few neurons, but axonal and dendritic structures. The two next layers, 
L2 and L3, are often not clearly distinguishable and combined to one layer, L2/3. 
The largest population of L2/3 cells consists of pyramidal cells, named after their 
pyramid-shaped somata. Pyramidal cells show two classes of dendrites: (1) the 
basal dendrites that originate from the base of the pyramid-shaped soma and 
reaching out within the same layer; (2) the apical dendrite that originates from the 
pyramid’s tip and often crosses all layers to the pia. In most cases, the apical 
dendrite shows a tree-like structure, with a trunk from which only few, so-called 
oblique dendrites stretch out, and a spreading terminal tuft with thin distal 
branches in L1. The majority of excitatory cells in L4, in contrast, are more 
isotropic in their distribution of dendrites, hence their name “spiny stellate cells”. 
Finally, the two deepest layers, L5 and L6, host the largest cells in the neocortex, 

 

 
Fig. 1.2  Drawings of cortical neurons from Cajal. Left, single pyramidal cell from layer 5. 
Right, layers 1-3 with heavily intertwined dendritic trees of pyramidal cells. Note that only 
a small fraction of cells is actually stained. (Figure adapted from Ramon y Cajal, 1995).  
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again pyramidal cells. In between all of these excitatory neurons one finds a wide 
range of inhibitory interneurons of different shapes and electrophysiological 
behavior. In general, interneurons mediate inhibition on a rather local spatial 
scale due to constrained axonal extension (Ahissar & Kleinfeld, 2003; Buzsaki et 
al., 2004; Somogyi & Klausberger, 2004; Yuste, 2005). 

 In addition to neurons involved in signal processing all layers contain 
additional cell types called glial cells. This class of cells comprises astrocytes, 
oligodendrocytes, and microglial cells. They are responsible for supporting 
neurons and repairing damage that the organism’s immune system cannot reach 
due to the blood-brain barrier (Nimmerjahn et al., 2005). They also might be 
involved in slow modulation of neuronal activity (Hirrlinger et al., 2004). 

 

Other principles of cortical organization 

In addition to the laminar structure, other structural features have been identified 
on different spatial scales: 

 Columns: In addition to the laminar organization a vertical organization of 
the neocortex into so-called radial columns has been found (Mountcastle, 1957; 
Hubel & Wiesel, 1962). Anatomical proof for a columnar organization of the brain 
is sparse, however, except in a few somato-sensory areas, such as the so-called 
barrel cortex of rodents, which is associated with the snout whiskers (Woolsey & 
Van der Loos, 1970). Most importantly, the cortical column is considered a 
functional unit for cortical processing with the idea that similar local neuronal 
circuits with similar processing capacities repeat themselves across the heavily 
interconnected neocortex. 

 Areas: Already about a hundred years ago it was suggested that certain 
brain areas are responsible for well defined sensations, movements, or mental 
tasks (Brodmann, 1909). Recent studies, using functional magnetic resonance 
tomography (fMRI), revealed in greater detail which parts of the neocortex are 
active during specific tasks (Shibasaki, 1993; Ashe & Ugurbil, 1994; Ungerleider, 
1995). For the somato-sensory cortex and the motor areas a clear topographic 
organization is present for which the concept or the homunculus was introduced 
(Penfield & Rasmussen, 1950). As the somato-sensory cortex is one of the best 
understood cortical areas, it was chosen for this study. All following chapters 
refer to this cortical area. 
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1  Introduction 

1.1.2  Concepts of neuronal signaling 

Basics of signal generation in the single neuron 

Neurons generate an electric potential across their outer cell membrane by 
maintaining concentration gradients of several ion species like Na+, K+, Ca2+ and 
Cl- (see chapter 1.3.2). The resting membrane potential Vrest (intracellular 
potential versus grounded extracellular space) is negative, usually around -60 to 
-90 mV. Hyperpolarization causes Vrest to shift to more negative values, while 
depolarization leads to an increase in Vrest. 

 The neuron’s output signal is a strong depolarization called an action 
potential (AP, see also chapter 1.3.2), which has a stereotypical fast time-course. 
An AP is elicited near the soma in the axon only if the membrane potential Vm 
crosses a depolarized threshold voltage Vthresh, usually in the range of -40 mV. 
The AP wave-form comprises three phases: (1) a very fast rising phase with a 
slope of several hundred mV/ms, which elevates Vm to a positive value of around 
+30 mV; (2) a fast decay phase repolarizing the cell to Vthresh; and (3) an after-
hyperpolarization (AHP) phase during which Vm is kept hyperpolarized relative to 
Vthresh and the neuron is prevented from eliciting another AP. 

 The AP then travels away from the soma along the axon, where it is 
transmitted via contacts called synapses to the following neurons. The cell in 
which the AP is elicited is called the pre-synaptic cell, the cell receiving the 
synaptic signal is called post-synaptic. In addition, APs also actively travel back 
into the dendrite (back-propagating action potential, BPAP), a mechanism 
thought to mediate a “hand-shake” for output-dependent synaptic plasticity 
(Debanne et al., 1998; Bi & Poo, 1998). 

 

Synaptic transmission 

All chemical synapses (we neglect here electric synapses or gap-junctions) work 
following similar principles: Upon arrival of a presynaptic AP, the intracellular free 
Ca2+ concentration in the presynaptic terminal is increased. Calcium sensors 
then initiate a signal cascade which ultimately leads to release of a chemical 
compound called neurotransmitter into the extracellular space between pre- and 
postsynaptic membrane (synaptic cleft). Once the neurotransmitter reaches the 
postsynaptic membrane, it binds to membrane-bound neurotransmitter receptor 
proteins, which in turn either (1) change their electric conductance and therefore 
can can be understood as a conductance in parallel to a battery mediating the 
electric driving force Erev (ionotropic receptors); or (2) initiate an postsynaptic 
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1  Introduction 

signal cascade which leads to conductance change or alteration of postsynaptic 
properties (metabotropic receptors).  

 For ionotropic receptors, the postsynaptic cell experiences a local change 
in membrane potential upon activation of a synapse. Excitatory synapses 
mediate a depolarization (excitatory post-synaptic potential, EPSP), thereby 
shifting the membrane potential towards Vthresh, while inhibitory synapses either 
hyperpolarize the cell (inhibitory post-synaptic potential, IPSP) or, if Erev is close 
to Vrest, effectively shunt the cell’s membrane without eliciting a post-synaptic 
potential PSP (so-called shunting inhibition).  

 

Dendritic integration 

PSPs at the synaptic sites are not simply summed at the soma, as synapses are 
located all over the dendritic tree and thus PSPs experience changes in shape 
and amplitude due to global and local dendritic properties. Waveform and 
amplitude of single PSPs are changed primarily by the dendrite working as a low-
pass filter, a result from linear cable theory (see chapter 1.3.1), broadening PSPs 
and reducing their amplitude the further away from the soma the synapse is 
located (for a review, see Koch, 1999). Additionally, non-linear properties of 
dendrites influence integration of PSPs to a yet unknown extent:  

- AP back-propagation: In cortical pyramidal neurons as well as in other 
cells of the CNS, APs elicited in the axon initial segment not only travel 
down the axon but also the dendrite in an active manner. This implies that 
voltage-dependent ion channels are also present in dendritic structures, 
which also has been shown experimentally (Stuart & Sakmann, 1994; 
Häusser et al., 1995; Stuart et al., 1997). Additionally, AP waveform 
introduces a refractory period to the dendrite, thereby inhibiting further 
synaptic excitation. 

- A couple of voltage-gated ion channels mediate local integration in 
dendrites. Threshold events similar to axonal APs have been observed 
experimentally in dendrites (Ca2+- or NMDA-spikes; Schiller et al., 1997; 
Schiller & Schiller, 2001), which are elicited upon concomitant activation of 
clusters of synapses. These effects amplify distal input otherwise invisible 
at the soma. In cortical pyramidal cells, the primary bifurcation of the 
apical dendrite often works as a kind of integration node. Interaction of 
axonal APs and Ca+-spikes initiated in this node has been shown to lead 
to altered AP-firing behavior (BAC-firing; Larkum et al., 2001). 

 6
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- The hyperpolarization-activated current Ih has been shown 
experimentally to have a high impact on dendritic integration. Especially in 
cortical L5 pyramidal cells, in which the channel density is high, Ih has 
been shown to govern voltage attenuation along the dendrite (Stuart & 
Spruston, 1998; Berger et al., 2001) uncouple dendritic and somatic 
compartments efficiently (Berger et al., 2003). Complementary 
experiments in pyramidal cells in the CA1 region of the hippocampus 
showed a high impact of Ih current on dendritic integration (Maccaferri et 
al., 1993; Magee, 1998).  

All the above-mentioned features of dendritic signal integration critically depend 
on the cell’s membrane properties like distribution and voltage-dependence of ion 
channels. Yet, in most cell types these properties still remain to be elucidated.  

 

 

1.1.3  Neurons under in vivo conditions 

According to the “neuron doctrine”, neurons are morphologically independent 
cellular units. These units are heavily interconnected via synapses forming 
complex biological neuronal networks. Consequently, activity in one neuron will 
have an effect on large parts of the surrounding network, leading to complex 
population activity patterns when actual computations take place. In order to 
understand this complex network activity we not only need to know the electrical 
and biochemical properties of the individual cell types, but also according to 
which rules and how these excitable circuits are activated under natural 
conditions in the intact brain (in vivo). 

 

UP- and DOWN states 

In vivo measurements of cortical cells reveal slow oscillations of membrane 
potential with frequencies <1 Hz (Steriade et al., 1993; Cowan & Wilson, 1994). 
During anesthesia and quiet wakefulness, this spontaneous activity takes the 
form of so-called UP- and DOWN-stats. While during the DOWN-state Vm stays 
close to Vrest, during UP-states the cell is depolarized by around 15 mV (Stern et 
al., 1997; Lampl et al., 1999; Steriade, 2001; Petersen et al., 2003b). 

 Many studies have been performed on UP/DOWN-states, most of them 
assuming high activation frequencies of synapses of >1 Hz during UP-states 
(Pare et al., 1998; Destexhe et al., 2001; Destexhe, 2003). This concept has

 7



1  Introduction 

Fig. 1.3  UP- and DOWN-states recorded in vivo in somato-sensory cortex of an 
anesthetized rat. (Figure taken from Waters & Helmchen, 2006). 

 

been pursued in several experimental as well as modeling studies, having lead to 
the conclusion that, during UP-states, the neuron’s input resistance is 
significantly reduced compared to DOWN-states due to an increase in synaptic 
conductance all over the dendritic tree (for a theoretical derivation see Koch, 
1999; Barrett, 1975; Rudolph & Destexhe, 2003). 

 However, in a recent study (Waters & Helmchen, 2006) it was shown that 
in cortical L2/3 pyramidal neurons, Rin was increased by around 20% during UP-
states, with an equivalent increase in the cell’s time-constant (see chapter 1.3.1). 
Furthermore, they could show that the L2/3 pyramidal neurons’ voltage response 
upon current injection (either synaptic or through an electrode during 
electrophysiological measurement) is supra-linear and can be well described by a 
second-order polynomial (see chapter 2.2.2). This effect of supralinearity is 
known as anomalous rectification (AR) and has been described previously (Katz, 
1949; Wilson, 1992; Johnston & Wu, 1999; see chapter 1.3.2). In respect to 
UP/DOWN-states, Waters & Helmchen (2006) showed that due to AR the 
numbers of active synapses needed to generate UP-states in L2/3 pyramidal 
neurons is much smaller (around 5 active synapses per ms) than assumed in 
previous studies, a finding which very well fits into the emerging picture of sparse 
activity in neocortex (Kerr et al., 2005; Lee et al., 2006). This strongly supports 
the notion that intrinsic neuronal properties have a strong impact on how the cell 
responds to the in vivo situation.  

 

 

1.1.4  Development 

At birth, the brain is not fully matured, but in a state where it first has to learn to 
make sense out of sensory input and how to react in an appropriate manner. 

 8



1  Introduction 

Most of the “wiring” of neuronal networks occurs while the animal starts exploring 
its surroundings, interacts with other animals, searches for food, etc. Additionally, 
not all sensory organs are fully available at birth: For example, rats are born 
blind, and their eyes open fully around 12 days after birth. As we have chosen 
the rat as model system for this study, the following paragraphs refer to 
developmental changes in these rodents. 

 

Postnatal maturation of the neocortex 

The cortex is assembled from neurons with an exceptionally long and complex 
life history (for a more thorough introduction see Squire et al., 2003; Tan et al., 
2002). This includes migration over long distances from two separate germinal 
zones into specific layers. Here, superficial layers are assembled later than deep 
layers, meaning with respect to cortical pyramidal cells that L2/3 neurons only 
reach their layer after L5 and 6 have been established (Sidman & Rakic, 1973). 
During this migration process, cortical neurons exhibit strong interaction with glial 
cells, which work as migration guides (Rakic, 1971, 1972; Edmondson, 1987). In 
addition, axons and dendrites have to be guided such that cortical areas are 
established and innervated and projections from these areas reliably target 
deeper brain areas (Erzurumlu & Jhaveri, 1990; Cohen-Tannoudji et al., 1994). 
This requires continuous re-structuring by axon growth and –elimination 
(O’Leary, 1992; Katz & Crowley, 2002), as well as building and elimination of 
synapses (Wiesel, 1982; Mariani, 1983). 

 Not only is network connectivity incomplete at birth, but single neurons are 
immature themselves. During the first postnatal weeks cells not only change their 
morphology but undergo large changes in gene expression profile, which in the 
case of ion channels can lead to strong modifications of the intrinsic 
electrophysiological properties. These range from reversal of ionic gradients 
(Cherubini et al., 1991) to pronounced changes of channel kinetics and –
densities (e.g. Fukuda & Prince, 1992; Kaplan et al., 2001). 

 Although these changes markedly slow down when the animal reaches 
adulthood, particularly following critical periods (see below), it is clear that the 
brain maintains a certain amount of plasticity, both regarding morphology and 
synaptic connectivity as well as homeostatic changes in the gene expression 
patterns. 
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The critical period 

During postnatal development, the animal undergoes sensitive periods during 
which its brain is particularly sensitive to modifications due to experience. Some 
periods are crucial for the proper development of neuronal circuits and are thus 
termed critical periods. 

 The critical period in respect to sensory neuronal networks has been 
shown in the calibration for sound localization in barn owls (Knudsen et al., 
1945), in birdsong learning in the zebra finch (Konishi, 1985; Doupe & Kuhl, 
1999), in binocular vision in cats (Wiesel & Hubel, 1963; Hubel & Wiesel, 1970) 
and in rats (Toldi et al, 1996), and in filial imprinting leading to recognizing own 
parents in human babies (Hess, 1973). 

 In rats, the critical period with respect to the somato-sensory cortex takes 
place during the second postnatal week. During this time, L2/3 dendritic arbors 
elaborate (Maravall et al., 2004), as do the projections from L4 to L2/3 (Bender et 
al., 2003). Simultaneously, the density of cortical synapses (Micheva & Beaulieu, 
1996) and the amplitude of stimulus-evoked postsynaptic potentials measured in 
L2/3 neurons in vivo increase several-fold (Stern et al., 2001). With the end of 
postnatal week 2, these developmental changes are mostly complete. 

 

 

1.2  The L2/3 pyramidal neuron 
The object of this study is the principal neuron located in cortical L2/3, the L2/3 
pyramidal cell.  In the following sections, the properties of these cells will be 
described, starting with their morphological particularities. 

 

1.2.1 Morphology 

L2/3 pyramidal cells are the most superficial excitatory neurons in the neocortex. 
In rat somatosensory cortex, L2/3 is the layer comprising the largest number of 
neurons per column (De Kock et al., 2007; Beaulieu, 1993). Their sheer number 
(40000-60000 mm-3) suggests that L2/3 provides a huge amount of 
computational power within the brain. 

 As all pyramidal cells, L2/3 pyramids posses an elongated soma, from the 
pia-oriented tip of which the apical dendrite originates. The basal dendrites grow 
from the “base” of the pyramid, whereby the oval soma shape is distorted into a 
pyramid-like shape. Size of L2/3 pyramid somata in adult rats is around 20 μm in 
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height and 16 μm in diameter, with a mean aspect ratio (height/width) of around 
1.2 and surface area of 270 μm2 (Schroder & Luhmann, 1997). 

 Morphological parameters concerning dendrites have to be considered 
with care, since most of the data have been obtained from in vitro slice 
experiments, where it is likely that basal dendrites and part of the apical tuft and 
obliques are cut off during slicing. The apical dendrite of L2/3 pyramidal cells 
invariably extends to the pial surface. The main trunk becomes thinner as 
distance to soma increases. Close to L1, the apical dendrite bifurcates into the 
apical tuft, with a projected receptive area of around 26·10-3 mm2, while the 
remaining apical dendrite (trunk and obliques) covers approximately 40·10-3 mm2. 
On average, 5 basal dendrites originate at the soma, and cover an area of 
around 60·10-3 mm2 (Schroder & Luhmann, 1997). Complexity of basal dendrites 
seems to be larger than of the apical, as judged by the number of branch points. 
Morphological variability is very high for this cell type (Larkman, 1991a; Larkman 
& Mason, 1990). 

 

 
Figure 1.4  Example morphologies of L2/3 pyramidal neurons. A-C, cells with increasing 
depth of soma relative to pial surface. Layers 1 and 2/3 are indicated. Taken from Larkman 
& Mason, 1990. 

 

 Differences between L2 and L3 pyramidal cells arise when the shape of 
the apical dendrite is related to soma position within L2/3 (Feldmeyer et al., 2006; 
Larkman & Mason, 1990). It was shown that pyramidal cells from L3 have a long 
apical dendrite which bifurcates close to L1 and forms a structurally simple (i. e. 
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few branch points) apical tuft. The apical dendrite of cells from L2, in contrast, 
bifurcates close to the soma and shows a much more complex tuft in respect to 
dendritic length and number of branch points. Also, in L2 cells, the apical tuft 
extends further laterally than the basal dendrites, with the other way round in L3 
pyramids (Dirk Feldmeyer, personal communication). 

 

Distribution of spines 

Larkman (1991c) counted spine distributions on dendrites of L2/3 cells in 
dependence of dendritic path length from the soma. He assessed a total number 
of around 8000 spines per cell, leading to a total of 9400 excitatory synapses. 
Here, the assumption was used that 85% of all excitatory synapses are located 
on spines, while the rest sits directly on dendritic segments (Peters, 1987). The 
mean spine density was 1.4 per μm dendritic length for basal dendrites, 2.5 μm-1 
on the apical trunk, 1.3 μm-1 in obliques and 0.6 μm-1 in the apical tuft segments. 

 In addition, the number of inhibitory synapses was estimated to be 13% of 
all synapses (Peters, 1987), leading to a total number of between 1400 
(Larkman, 1991c) and 2000 (DeFelipe & Farinas, 1992) per L2/3 neuron. The 
distribution of these synapses is not that easily measurable, as only few are 
located on spines. Most inhibitory synapses directly target dendritic shafts of the 
soma, where IPSPs show a higher impact on dendritic integration (see chapter 
1.3.3). 

 

 

1.2.2 Electrophysiological properties 

L2/3 pyramidal cells are not as easily accessible with electrophysiological 
methods as the much larger L5 or L6 pyramids. This has lead to the situation that 
L2/3 pyramids, although very numerous within the neocortex, have been 
characterized systematically in terms of their electrophysiological properties only 
very recently. Most of these data were obtained from adult animals and 
experimental studies addressing the development of L2/3 neurons are scarce. 

 

Sub-threshold properties 

Several studies exist, in which the basic sub-threshold properties, namely input 
resistance Rin and resting membrane potential Vrest, of L2/3 pyramids have been 
examined: Values found in vitro range from Rin = 26-30 MΩ (Hwa & Avoli, 1991; 
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Larkum et al., 2007) to around Rin = 45 MΩ (Traub et al., 2003; Waters et al., 
2003), while resting potential was found to lie between -80 mV (Schroder & 
Luhmann, 1997) and -68 mV (Traub et al., 2003). Values from in vivo 
experiments obtained during DOWN-states lie in the same range (Waters et al., 
2003; Waters & Helmchen, 2004; Waters & Helmchen, 2006) 

 One of the basic findings in the study of Waters & Helmchen (2006) was 
that L2/3 pyramidal neurons show pronounced anomalous rectification under in 
vivo conditions, an effect, which had been described for cortical pyramidal 
neurons in several previous in vitro studies (Connors et al., 1982; Stafstrom et 
al., 1982; Sutor & Zieglgänsberger, 1987; Hwa & Avoli, 1991; Cowan & Wilson, 
1994). Hwa & Avoli (1991) reported that high concentrations of 3 mM Ba2+ and 
the intracellular blocker QX 314 abolished AR, leading to the conclusion that in 
L2/3 pyramids it is not Ih which is responsible for AR, but an unknown voltage-
dependent K+ conductance. In particular, these findings also show one of the 
main differences between L2/3 and L5 pyramidal neurons: In L5 pyramids, sag is 
very prominent (30-40%; Zhu, 2000), indicating higher densities of HCN channels 
(Kole et al., 2006), while in L2/3 pyramids, little sag has been observed 
(Larkman, 1991b; Larkum et al., 2007). The effect of nonlinear I-V relationships 
and their effect on firing behavior also has been attributed to persistent Na+ 
currents (Traub et al., 2003), but with sparse experimental evidence. Hence, a 
detailed knowledge of the ionic currents shaping sub-threshold membrane 
potential changes is still lacking. 

 

Supra-threshold properties 

L2/3 pyramidal neurons were found to be regularly spiking, i.e., upon constant 
depolarizing current injection of arbitrarily long duration, the spike frequency 
stays constant. This is in contrast to L5 pyramids, among which around 15% are 
able to generate intrinsic bursts (Connors et al., 1982). Nevertheless, also in L2/3 
pyramids doubletts of APs can be elicited by stimulus onset (Schroder & 
Luhmann, 1997; Larkum et al., 2007). 

 AP waveform is similar to that found in L5 pyramids, with an amplitude of 
around 120 mV relative to Vrest in vitro and in vivo (Waters et al., 2003) and a 
rising flank 2.5 times faster than the falling (Schroder & Luhmann, 1997). APs 
propagate actively into the dendrites, as was shown by calcium imaging and dual 
somatic and dendritic recordings (Waters et al., 2003; Waters & Helmchen 2004; 
Larkum et al., 2007). Voltage attenuation is comparably weak, such that the AP 
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might be sensed by the whole dendritic tree, despite a distortion of the waveform 
as the AP propagates along the dendrite. 

 In a very recent study (Larkum et al., 2007), dendritic properties of L2/3 
pyramidal neurons were examined. Although properties were found, which were 
qualitatively similar to those found in L5 pyramidal neurons (e.g. the ability of the 
apical dendrite to generate regenerative potentials), these properties also clearly 
differed quantitatively from L5 neurons. While in L5 neurons interaction of 
somatically generated APs and long-lasting dendritic calcium spikes leads to 
firing of several additional APs at the soma (Larkum et al., 1999), dendritic spikes 
in L2/3 pyramids were shorter and typically caused only one additional AP when 
paired with somatic spikes (Larkum et al., 2007). 

 

 

1.2.3 Input and output 

The following considerations of synaptic input and output of L2/3 pyramidal 
neurons are mainly based on data from rat barrel cortex. As input from different 
layers or brain areas arrive at different locations of the dendritic tree, integration 
of these inputs will strongly depend on the local morphological and 
electrophysiological properties of these dendritic compartments. 

 Main translaminar input into L2/3 arrives from spiny stellate cells and star 
pyramids in L4. The synapses from L4 onto L2/3 pyramidal cells are invariably 
located on the basal dendrites (85%) and proximal apical obliques (15%) 
(Feldmeyer et al., 2002). In somatosensory cortex, these projections are 
restricted to single columns (Petersen et al., 2003; Lubke et al., 2003). L4 to L2/3 
connections are unidirectional with close to no activity arriving in L4 from L2/3 
(Feldmeyer et al., 2002). Additionally, several L4 cells project onto one given 
L2/3 pyramidal cell. This leads to a broader receptive field (the region of space in 
which the presence of a stimulus will alter the neuron’s AP output) in L2/3 
pyramidal cells in comparison to L4 neurons (Brecht et al., 2003). Synaptic 
strength depends on distance of the L2/3 target cell from L4, with a decrease in 
strength the further away the L2/3 pyramidal cell (Feldmeyer et al., 2002).  

 Connections from L2/3 onto L2/3 cells were examined within single cortical 
columns of rat barrel cortex (Feldmeyer et al., 2006). Here, comparable 
convergence and divergence was found, suggesting that in L2/3 signals are 
amplified before being distributed to neighboring columns. Again, practically all 
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synapses are located on the basal dendrites, with the innervation domain being 
almost identical to that of L4 to L2/3 connections. 

 Additional input arrives at the apical tuft from thalamus and higher order 
sensory areas. It seems that, together with L5 pyramidal neurons, L2/3 pyramids 
are through their apical tree the only cortical cells receptive to these inputs 
(Cauller & Kulics, 1991). Taken together with a second integrative centre near 
the apical tuft (Ca2+ spike initiation zone) these inputs might strongly shape the 
neuron’s response in vivo.  

 

Output from L2/3 pyramidal neurons 

 L2/3 pyramidal cells receive input from many different areas and other 
cortical layers. These inputs are integrated in a complicated, non-linear manner, 
since it was shown that the dendrites of these cells host a variety of voltage 
dependent channels. However, most of the mechanisms involved have not been 
completely understood, requiring a lot more experimental effort to decipher the 
cells’ behavior. In addition, many questions have not been addressed at all, like 
how these cells mature during postnatal development. 

 A complimentary tool for understanding experimental results and guiding 
further experiments are numerical computer simulations of neurons, the 
conceptual basis of which will be described in the remaining paragraphs of this 
introductory section. 

 

 

1.3 Biophysics of neuronal computation 
In the following section a short introduction to basic concepts of a more physical 
view on single cells will be given. These concepts will be presented in a general 
way applicable to practically all cell types, while the particular methods utilized in 
this study will be described in detail in the modeling methods section (chapter 
3.1). 

 

1.3.1 The passive cable equation 

Dendrites and axons of neurons can be considered as electrical cables with a 
conductive core represented by an axial resistance Rax and an outer membrane 
represented by a parallel circuit consisting of a membrane resistance Rm and a 
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capacitance Cm (Jack et al., 1983). The core conductor – the intracellular medium 
of the cell – is an electrolytic solution, the electrical conductivity of which is 
determined by the concentration of mobile intracellular ions such as potassium 
and chloride and by the excluded volume taken up by intracellular organelles 
such as mitochondria. Typical values for the specific resistivity of the intracellular 
medium Rax in neurons of the mammalian central nervous system range from 70 
to 150 Ω·cm (Roth & Häusser, 2001). The capacitance of the membrane is 
determined by the effective thickness and the effective dielectric constant of the 
lipid bilayer. Both are not exactly known because of proteins embedded into the 
cell membrane at unknown density. Following voltage changes these proteins 
experience partial charge movements and thus add to unknown extent to the 
membrane capacitance. Direct measurements of Cm yield values of 1 μF/cm2 for 
various cell types (Gentet et al., 2000). Membrane resistance is mainly mediated 
by ion-conducting channel proteins. One can divide Rm into an “active” part for 
voltage-dependent ion channels and a “passive” part for voltage-independent 
leak conductances. The latter usually lead to a specific passive membrane 
resistance of 10 to 100 kΩ·cm2 (Koch, 1999). 

 Locally, between branch points, the geometry of the dendrite or axon can 
be approximated by a cylinder. This cylinder is sufficiently long and thin, and the 
membrane resistance is large compared to the intracellular resistivity such that 
most of the electric current inside the structure flows parallel to its longitudinal 
axis. This allows the reduction of the problem from three dimensions to one: One 
does not need to consider the radial flow of currents inside the cylinder but only 
the component along one spatial dimension x along the longitudinal axis. 
Furthermore, capacitive effects inside the intracellular medium can be neglected 
on a millisecond timescale, as well as inductive effects (Jack et al., 1983). Finally, 
for considering single cells, one may assume the extracellular medium as having 
negligible resistivity and being virtually isopotential (which might not hold 
anymore when considering cells in intact tissue in vivo). 

 These simplifications allow the application of the linear cable equation, 
which was first formulated by William Thomson, later Lord Kelvin, in 1854 with 
respect to transatlantic telegraph cables. This equation governs the development 
of voltage in space and time along a one-dimensional cable of diameter d: 
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Here, injection of external currents Iext has been added. The electrotonic length 
constant λ is given by 
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and the time constant τ by 

 mmCR=τ         (1.3) 

The linear cable equation is a partial differential equation of the parabolic type 
similar to the diffusion equation. Buffered diffusion of calcium ions, an important 
intracellular messenger, indeed follows a similar mathematical equation. 

 For analysis of a passive dendritic tree, Wilfried Rall developed a method 
of collapsing dendrites into a single equivalence cylinder of varying diameter 
(Rall, 1962; Rall, 1964). That way, the calculation of voltages at branching points 
can be circumvented. Of course, for calculating synaptic signaling in branched 
dendritic trees with synapses distributed over the whole structure, this method is 
unfeasible, and numerical simulation of the tree have to be performed. To this 
end, the branched dendritic tree is discretized into compartments such that in 
equation 1.1 the differentials become differences, which allows numerical 
approaches (see chapter 3.1.2).  

 

 

1.3.2 Voltage dependent ion channels 

If the cell membranes of neurons where passive only, one crucial feature for 
performing computations would be missing: nonlinearities. Fortunately, nature 
came up with the means to make life more interesting, namely voltage-dependent 
ion channels, which allow a current of one or several ion species to pass through 
the membrane in a voltage dependent manner. These mechanisms mediate most 
of the neuron’s nonlinearities, the most prominent of which is the action potential. 

 

Ion species and reversal potentials 

For each ion species X, the reversal potential Erev can be defined as that voltage 
across the membrane, for which the net ion current vanishes, given the 
concentration gradient across the membrane. Erev is determined by the Nernst-
equation: 
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Here, z denotes the valence of that ion species, [X]o and [X]i its outside and 
inside concentrations, respectively, F Faraday’s constant, R the universal gas 
constant and T the absolute temperature. Equation 1.4 describes an 
electrochemical equilibrium, meaning that, given a certain concentration 
difference across an impermeable membrane a counter-balancing electric 
potential will build up; vice versa, a given potential difference across a permeable 
membrane will lead to an according concentration gradient. Only a small number 
of ion species govern the electric activity in cortical principal neurons. Each of 
these species is driven by their own reversal potential as calculated in equation 
1.4. Estimate values for neurons are shown in Table 1.1. 

 

Ion species [X]i / mM [X]o / mM Erev,X / mV 

Na+ 18 150 +56 

K+ 135 3 -102 

Cl- 7 120 -76 

Table 1.1  Concentrations and reversal potentials of the main ion species governing 
electrical behavior of neurons. 

 

 For several ion species and partially permeable membranes, the total 
equilibrium potential Vrest is described by the Goldman-Hodgkin-Katz (GHK) 
equation (Goldman, 1943; Hodgkin & Katz, 1949): 
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with a similar nomenclature as in equation 1.5. Here, [Xcat] and [Xan] denote 
concentrations of cations and anions, respectively. Sums run over all ion species 
present. The coefficients Pcat and Pan are the respective permeabilities. 

 

Rectification 

The term rectification denotes a non-ohmic, i.e. non-linear, behavior of the cell’s 
I-V relationship. In analogy to equation 1.6, the current through the membrane of 
a given ion species is given by the GHK current equation: 
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Nomenclature is as in equation 1.5. This model is derived with the Nernst-Planck 
equation for electrodiffusion under the assumption of a constant electric field 
across the membrane and independent movement of ions. Even without voltage-
dependent permeability, equation 1.7 predicts non-linear voltage-dependent 
currents if [X]i and [X]o are different (Fig. 1.5). For cations, currents inwardly 
rectify for [X]o/[X]i > 1 and outward rectify for [X]o/[X]i < 1.  

 Since the conductance through passive membranes is mainly mediated by 
voltage-independent K+-channels, following equation 1.7 an outward rectifying I-
V-relationship would be expected. Any deviation from this behavior implies the 
presence of other, presumably voltage-dependent channels, the theory of which 
will be covered in the following paragraph. 

 

 
Fig. 1.5  Cationic currents in dependence of membrane potential for various values of 
[Xcat]o/[Xcat]i (given in numbers at respective curve). Figure taken from Johnston & Wu, 
1997. 

 

 

The Hodgkin-Huxley (HH) model 

The most common description of channel gating is the formalism proposed by 
Hodgkin & Huxley (1952 a-d). They assume that for a channel to conduct an 
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electric current a series of independent, voltage-dependent gating particles have 
to be opened. The state dynamics of each particle x is described by first order 
kinetics: 

        (1.8) openclosed xx
⎯⎯←
⎯→⎯

β

α

The forward and backward rates, α(V) and β(V), respectively, introduce the 
voltage dependency of the gating. 

 Taking x as the probability of the particle being open, one obtains the 
associated differential equation: 
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with the steady state value of x, x∞(V), and the time constant, τx(V), given by α(V) 
and β(V) as: 
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In addition to voltage dependence the rate constants can also depend on other 
signals, like e. g. the intracellular concentration of free calcium, [Ca2+]i. 

 The probability p of the channel being open is the product of the open 
probabilities of the channel’s gating particles: 

       (1.11) ∏=
i

n
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Here, the xi denote the different types of gating particles (e. g. one activation and 
one inactivation particle) and ni is the number of a certain particle associated with 
the channel. The current IX through a given channel then is: 
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For example, in the original HH model, the fast sodium channel responsible for 
the fast rising phase of the action potential was modeled as having three 
activation particles, n, and one inactivation particle, h (Fig. 1.6): 

 20



1  Introduction 

       (1.13) ),(),(),( 3 tVhtVntVp =

 

 
Fig. 1.6  Kinetics of the original Hodgkin-Huxley model of membrane excitability of the 
squid giant axon (Hodgkin & Huxley, 1952d). Left panel: Voltage-dependent steady state 
open probability x∞(V)of activation and inactivation particles. Right panel: Time constants 
τx for reaching steady state. 

 

 Incorporating currents through voltage-gated ion channels into the cable 
equation 1.1 is done simply by adding the currents to the right-hand side to Iext. 
Nevertheless, as channel activation and inactivation is governed by V(x,t), a 
system of coupled differential equations has to be solved in order to calculate the 
development of V(x,t) in time and space. Usually, this is done numerically (see 
chapter 3.1.2) 

 The ni in equation 1.11 (the number present of a given gating particle) can 
be considered as another free parameter of the channel kinetics. It accounts for 
the observation that some channels show sigmoidal activation behavior under 
voltage clamp conditions arising from the time course (1-exp(-t))n for n > 1. This 
introduces a delay to the closed-to-open transition, which is important for e. g. 
again the fast sodium channel.  

 One has to be cautious, though, when one compares the predictions and 
structure of the HH-model with actual channel proteins. Although these 
macromolecules do possess voltage sensors and selectivity filters for certain ion 
species, structures representing the predicted number of gating particles have 
not been found. Thus, the HH-model has to be viewed as a purely mathematical 
tool for a phenomenological description of ion channel behavior. Nevertheless, a 
more physically relevant description based on the HH-model and concepts of 
enzyme kinetics will be introduced in chapter 3.1.1. 
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Types of ion channels 

Based on equation 1.9, two principal types of voltage-dependent ion channels 
can be identified: channels with no inactivation particle mediating persistent 
currents, and inactivating channels mediating transient currents. A good overview 
of most known channel types can be found in Hille (2001). 

 The transient class comprises the fast Na+-channel responsible for the fast 
rising phase of the AP in the squid giant axon (Hodgkin & Huxley, 1952 a-d), 
which is sensitive to tetrodotoxin (TTX; Catterall, 1992); the A-type K+-channel 
shaping the delay of AP initiation after stimulus onset and AP waveform 
(Hagiwara et al., 1961; Connor & Stevens, 1971); and the T-type Ca2+-channel 
(Nilius et al., 1985). 

 Persistent channels are the delayed rectifier K+-channel responsible for 
repolarization from AP (Hodgkin & Huxley, 1952 a-d); the M-type K+-channel 
responsible for firing frequency adaptation (Brown, 1988; Wang et al., 1998; 
Jentsch, 2000); the persistent Na+-channel (Chandler & Meves, 1970; Llinas, 
1988; Goldin, 2001); the L-type Ca2+-channel (Nilius et al., 1985); and the HCN-
channel mediating the hyperpolarization activated or “queer” current Ih 
(Yanagihara & Irisawa, 1980; DiFrancesco, 1981; McCormick & Pape, 1990; 
Lüthi & McCormick, 1998). 

 Additionally, a couple of K+-channels are not only voltage-dependent, but 
gating also depends on [Ca2+]i. This class comprises the SK and BK channels, 
responsible for AP after-hyperpolarization (AHP) on different timescales and AP 
frequency adaptation upon Ca2+-accumulation (Meech, 1974; Blatz & Magleby, 
1987; Garcia et al., 1997; reviewed in Sah, 1996). 

 

 

1.4  Specific goals of this study 
In this study, the integrative and sub-threshold properties of L2/3 pyramidal 
neurons will be investigated by combined experimental and computer modeling 
approaches. The main questions are: 

(1) How do the biophysical properties like input resistance, anomalous 
rectification and action potential properties of L2/3 pyramidal cells change during 
postnatal development? 

(2) How can the effect of anomalous rectification be explained in terms of 
molecular mechanisms (ionic conductances)? 
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(3) Can these properties be incorporated into a consistent model for the aged-
dependence of L2/3 pyramidal neurons? 

(4) What is the cells’ response to modeled in vivo-like activity at different ages? 

 To address these questions, in vitro electrophysiological experiments 
applying the whole-cell patch-clamp technique in acute brain slices of rat 
neocortex were performed. During these experiments, several channel-blocking 
drugs were applied in order to elucidate the mechanisms underlying anomalous 
rectification in L2/3 pyramidal cells. Biocytin-labeling during patch-clamp 
experiments allowed retrieval of cell morphologies. 

 Using the obtained experimental data, age dependent computer models of 
varying complexity were build, starting with single compartment cells up to full-
morphology neurons with non-homogenous channel distributions. In order to find 
near-optimal parameter sets to reproduce experimental data, an automated 
parameter search algorithm was written and employed. This permitted not only to 
build a high number of single cell models with objective constraints, but also to 
give an estimate of the variability of parameters in these cells. These age 
dependent models were then exposed to stochastic synaptic input as it is 
presumably found during UP-states in vivo, such that the effect of non-linear 
synaptic integration due to anomalous rectification could be assessed. 
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2.1  Experimental methods 
Whole cell patch-clamp recordings were obtained from L2/3 pyramidal neurons in 
acute brain slices prepared from animals of different ages. Cell morphologies 
were histologically reconstructed and sub- and suprathreshold electrical 
properties were characterized. The currents underlying anomalous rectification 
(AR) were dissected pharmacologically. In the following paragraphs we describe 
the experimental setup and procedures as well as the data analysis procedures 
in detail. 

 

2.1.1  Electrophysiology 

Brain slice preparation 

Parasagittal slices of the rat cortex were prepared from 8 to 45 days old (p8-p45) 
Wistar rats according to standard procedures (Edwards et al., 1989; Blanton et 
al., 1989). All procedures were in accordance with the German animal protection 
law. Rats were anesthetized with Isoflurane and decapitated. The two 
hemispheres of the brain were quickly removed and transferred to ice cold slice 
solution. One hemisphere was glued with its cut surface onto a block of stainless 
steel in a slice chamber and quickly covered with ice cold slice solution. The top 
2.5 to 3.5 mm of tissue (depending on age) were removed. Then 300 μm thick 
slices were cut using a custom-built vibratome (Max-Planck-Institute for Medical 
Research, Heidelberg) equipped with a standard razor blade. Brain slices were 
immediately removed from the slice chamber and transferred onto a gaze net in a 
beaker containing slice solution at room temperature (about 20°C). Slices could 
be stored between 4 and 8 hours (longer for younger animals) with most of the 
cells still intact. For experiments brain slices were chosen in which the apical 
dendrites of pyramidal neurons were parallel to the slice surface or running into 
the slice at a small angle in order to ensure that the apical tuft was intact. 

 

The patch-clamp technique 

The patch-clamp technique, originally developed by Neher and Sakmann (Neher 
& Sakmann, 1976; Hamill et al., 1981; Sakmann & Neher, 1984) for measuring 
electric currents through single ion channels, can be adopted for measuring the
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electric activity of single neurons using the so-called “whole-cell” configuration. 
The basic principle is to establish a tight seal of a glass micropipette with a tip 
diameter of around 1 μm with the outer membrane of the cell forming an electric 
resistance of above 1 GΩ between pipette interior and extracellular space (thus 
the term “gigaseal”), while the intracellular space is connected to the pipette 
interior via a relatively low access resistance Racc of a few MΩ. In current clamp 
(CC) mode, the current through the cell membrane is kept close to a preset 
command current by adjusting voltage by a feedback circuit. With no external 
command current, the measured voltage is the resting membrane potential. All 
data presented in this thesis were measured using the CC mode. In voltage 
clamp (VC) mode, the voltage is kept to command level by injecting appropriate 
currents through the micropipette.   

 

Patch-clamp setup 

All experiments were performed using an AxoClamp-2 B amplifier (Axon 
Instruments, Molecular Devices, CA, USA) operated in CC mode. In addition, 
voltage signals were monitored on an oscilloscope screen (5113, Tektronix, TX, 
USA). Analogue input signals were digitized and analogue control signals 
generated with a PCI-MIO-16E-1 AD/DA-converter board (National Instruments, 
TX, USA).  The preamplifier headstage (HS-2A, Axon Instruments, CA, USA) 
holding the patch pipette was mounted on a motorized 3-axis micromanipulator 
(Luigs&Neumann, Ratingen, Germany) allowing positioning of the pipette tip with 
sub-micron precision and good stability (i. e., little drift during recordings). 
Continuous pressure (positive or negative) was applied to the pipette manually 
using a syringe. Brief suction pulses (-200 to -600 mbar, duration 200 ms) for 
breaking into the cells were generated with a Suction Pulser (Sigmann Elektronik, 
Hüffenhardt, Germany).  

 The patch-clamp setup was built around a fixed-stage Zeiss Axioscope 2 
microscope equipped with a water immersion 40x objective (Achroplan, NA 0.75; 
Zeiss, Jena, Germany). Individual neurons were visualized using infrared (IR) 
differential interference contrast (DIC) microscopy (Stuart et al., 1993) using an 
IR sensitive camera (C2400, Hamamatsu, Japan). The brain slice chamber was 
mounted on a manual x-y microscope stage (independent of the fixed-stage 
microscope) to allow movement of the slice relative to the electrodes once these 
were in place. In order to avoid movement of the brain slice during recordings it 
was fixed with a grid made of a platinum frame and spanned with single nylon 
strings. In all experiments the chamber was perfused with extracellular solution 
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(see below), which was heated to 35°C by a flow heater (Sigmann Elektronik, 
Hüffenhardt, Germany). The bath was grounded with an Ag/AgCl electrode 
(World Precision Instruments, Florida, USA), which in turn was connected to the 
reference input of the preamplifier. Intracellular solution (see below) in the pipette 
was connected electrically to the preamplifier via a chlorided silver wire. Patch 
pipettes with a tip diameter of about 1.2 μm (4-7 MΩ tip resistance) were pulled 
from borosilicate glass tubes with a horizontal multistep puller (Sutter 
Instruments, CA, USA).  

 

Solutions 

All solutions were filtered to not contain particles bigger than 0.2 μm. The 
extracellular solution for preparing brain slices contained (in mM) 125 NaCl, 25 
NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 3 myo-Inositol, 2 Na-pyruvat, 0.4 Vitamine C, 1 
CaCl2, 5 MgCl, 25 glucose. Solution was bubbled to pH 7.2 with a mixture of 95% 
O2 and 5% CO2 (“carbogen”). The bath solution (Biometra, Göttingen, Germany) 
contained (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl, 2 
CaCl2 and 25 glucose. Solution was bubbled with carbogen to pH 7.2. The 
intracellular solution contained (in mM): 135 K-gluconate, 10 Hepes, 10 
Phosphocreatin-Na, 4 KCl, 4 ATP-Mg, 0.3 GTP; pH was adjusted to 7.2 with 
KOH. 3 mg/ml biocytine (Sigma-Aldrich, Switzerland) were added in all 
experiments to allow histological reconstruction of cell morphologies. Normal rat 
Ringer solution (NRR) contained: 135 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2 and was 
buffered to pH 7.2 with 5 Hepes. 0.1 M Phosphate buffer (PB) contained 
Na2HPO4 and NaH2PO4 in a ratio of 3:1 (pH 7.2).  

 

Whole cell recordings from L2/3 pyramidal neurons 

The standard “blow-and-seal”-technique (Blanton et al., 1989) was used to obtain 
whole-cell recordings from pyramidal neurons (Fig. 2.1). A small positive 
pressure (around 30 mbar) was applied to the patch pipette while approaching 
the target neuron identified with IR-DIC microscopy. This ensured that other cells 
and cell debris (which usually is generated during slicing) were blown out of the 
pipette’s way, preventing a clog of the pipette tip. This approach is crucial for a 
successful formation of a GΩ-seal. While approaching the cell the amplifier was 
set to CC mode (with Iinj = 0 nA) to adjust the voltage measured at the tip to 0 
mV. Small current testpulses of about 20 ms length and 20 pA amplitude were 
applied to measure pipette resistance. Once the pipette tip touched the neuron’s 
surface, a small dimple appeared on the cell’s surface due to the positive 
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pressure. At this moment the pressure was reduced to 0 mbar and the amplifier 
switched to VC mode and set to a hyperpolarized voltage (around -80 mV). Often 
this procedure was sufficient to achieve a seal resistance of above 1 GΩ, while in 
cases where the gigaseal did not form immediately a small negative pressure 
was applied until the resistance reached a sufficiently high value. Following 
successful gigaseal formation small negative suction pulses were applied through 
the patch pipette in order to break through the cell’s outer membrane without 
disrupting the gigaseal. Establishment of the whole cell configuration was evident 
on the oscilloscope when larger transients appeared due to the cell’s input 
resistance and membrane capacity. The amplifier was then switched back to 
current clamp mode, and the cell was given at least 10 minutes time to 
equilibrate with the internal solution contained in the patch pipette. 

 

 
Fig. 2.1  Blow-and-seal technique. DIC images of the different steps described in the text. 
A, approaching the selected cell. B, the pipette touches the cell’s surface. A small dimple 
is visible around the pipette’s tip. C,  sealing by removing the positive pressure from the 
pipette. 

 

 Before each measurement the access resistance (usually around 15-20 
MΩ) was measured and counterbalanced using the bridge mode of the amplifier. 
With the command current set to 0 nA the measured voltage then corresponds to 
the resting membrane potential (see results section). Junction potential at the 
pipette tip was not taken into account in order to make results compatible with 
previous publications, but can be estimated to be around 10 mV based on the 
composition of intra- and extracellular solutions (Adam et al., 1995). 

 Voltage-current relationships were determined by injecting a series of 500 
ms long current pulses preceded by 200 ms long baseline and followed by 500 
ms for repolarization. The interpulse-interval was 5 s. Injected currents ranged 
from -800 pA to +800 pA, usually in steps of 50 pA. Minimal and maximal values 
were age-dependent and chosen such that a complete V-I curve and the cell’s 
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firing behavior could be retrieved. Signals were not pre-filtered by the amplifier 
and digitized with a sampling frequency of 10 kHz.  

 

Drugs 

Drugs for pharmacological experiments were applied to the cell through the bath 
solution. Inward rectifier potassium channels were suppressed with 50 μM BaCl2. 
Hyperpolarization-activated channel Ih was blocked by 50 μM ZD7288 (4-
ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride, Tocris, MO, 
USA). Sodium channels were nonspecifically blocked by 1 μM tetrodotoxin (TTX; 
Sigma, MO, USA); persistent sodium channels were blocked with 200 μM 
phenytoin (5,5-diphenylhydantoin-Na; Sigma, MO, USA). 

 

Slice fixation and reconstruction of cell morphologies 

Cells were filled with biocytin through the patch pipette for retrieval of cell 
morphologies (Horikawa & Armstrong, 1988). Following recording, slices were 
fixed at 4°C for at least 24 h in 100 mM phosphate-buffered saline (PBS, pH 7.4) 
containing 4% paraformaldehyde (PFA). After quenching in PBS containing 3% 
H2O2 for 25 min and permeabilization with 2% Triton in PBS for 1 h, slices were 
incubated overnight at 4°C in PBS-avidin-biotylinated horseradish peroxidase 
(ABC Kit; Vector Labs, CA, USA) containing 1% Triton X100. Slices were then 
reacted using 3,3-diaminobezidine (DAB) as a chromogen under light 
microscopic control until dendritic arborisation was clearly visible. After several 
rinses in PBS they were mounted on slides, embedded in Moviol (Clariant, 
Sulzbach, Germany) and enclosed with a coverslip. 

 Morphological reconstructions were performed using a NeuroLucida 
system (MicroBrightField Inc., VT, USA). In brief, stained cells were viewed 
through a high magnification (100x, NA 1.25, plan oil immersion; Olympus, 
Tokyo, Japan) objective mounted on an Olympus BX40 bright field microscope 
(Olympus, Tokyo, Japan). Dendritic protrusions were traced by hand. The 
NeuroLucida software acquires the xy-position of the mouse pointer and the z-
position via the focal position. Also, for every traced segment the thickness was 
measured. Cell morphologies were saved as ASCII files and converted to HOC 
format using a custom written converter program (kindly provided by Stefan 
Lang). Sholl analysis (Sholl, 1953) was performed using the NeuroExplorer 
software package (MicroBrightField Inc., VT, USA). 
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2.1.2  Data Analysis 

All electrophysiological data were analyzed using customized routines written in 
Igor Pro 4.0 (Wavemetrics, OR, USA). Fitting routines for nonlinear functions 
utilize the Levenberg-Marquardt algorithm (Marquardt, 1963). All data (if not 
noted otherwise) are displayed as mean ± standard error (sem). Number of cells 
n is given as n(m), where m denotes the number of different animals the cells 
were measured from. 

 

Significance tests 

In pharmacological data, e. g. measurements from the same cell before and after 
application of drugs, the effectiveness of the applied drugs was tested using a 
paired t-test: 

 
Δ

Δ
=

σ
Nyt          (2.1) 

Here, yΔ  is the mean difference between pairs of data points y, σΔ the standard 
deviation of that mean difference, and N the total number of data pairs. The 
criterion used for significance was p < 0.05; data were considered highly 
significant if p < 0.01. This test was chosen as the most rigorous. However, we 
have not shown that data points are normally distributed. 

 Monotonic functional correlations between parameters were tested using 
Spearman’s correlation coefficient: 
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rg() denotes the rank of the x or y data-point, respectively; bars denote averaged 
values. 

 

Electrophysiological data 

From a series of voltage traces, resting membrane potential Vrest was determined 
for each trace as average over the first 200 ms (2000 points) without current 
injection. Only cells with a drift of less or equal 1 mV were taken for analysis. 
Steady state voltage values used for V-I curves were computed as average of the 
last 100 ms (last 20%) of each trace during the current injection pulsed. Steady 
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state voltage deflections ΔV were then calculated for each trace as the difference 
between steady-state voltage and Vrest. Relative sag in percent (a measure for Ih 
current; see chapter 2.2.2) was determined as difference between steady state 
voltage and minimum or maximum of the voltage trace (depending on whether 
hyper- or depolarizing currents were used), divided by the steady state voltage 
(Fig. 2.2A): 

 
statesteady

statesteadyextremumsagrelative −
=     (2.3) 

Sag values associated with steady-state polarizations between -10 mV and + 10 
mV were not further analyzed since small amounts of noise (or spontaneous 
postsynaptic potentials) caused erroneous high sag values (Fig. 2.2B, grey bar). 

 

 
Fig. 2.2  Analysis of relative sag and onset time constant. A, example voltage trace 
showing quantities used in formula 2.3 (baseline Vrest = -76 mV). B, resulting relative sag 
plotted versus steady state ΔV. Values between -10 and +10 mV (grey bar) were excluded. 
Mean values (red) were derived by averaging values in 10 mV bins. C, exponential fit (black 
broken line) to voltage trace between stimulus onset and minimum of trace. D, onset time 
constants plotted τon versus steady state polarization. Mean values (red) were derived by 
averaging values in 10 mV bins. 
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 Onset time constants τon were measured by fitting an exponential function 
to the voltage trace between current onset and minimum or maximum of 
hyperpolarized and depolarized traces, respectively. Here, the first 0.5 ms after 
stimulus onset were excluded because of the stimulation artifact (Fig. 2.2C). Note 
that, due to the activation of Ih-current, a systematic error is included into the 
measurement of τon, leaving it as an upper estimate of the cell’s onset time 
constant. Steady state voltages, τon and sag values of traces with action potential 
(AP) were not considered for analysis of sub-threshold properties. 

 

 

Fig. 2.3  Measuring action potential (AP) parameters. A, single AP and derived values. 
Threshold Vthresh was defined as absolute voltage at the inflection point. B, example plot of 
AP halfwidth (upper panel) and amplitude (lower panel) plotted versus access resistance 
for the p14 age group. Broken red lines show linear regression fits. Y-axis intercepts were 
accepted as halfwidth and amplitude Vamp for further analysis. 

 

 AP parameters were measured for the first AP elicited ever in a series of 
current injections except in cases when a doublet was fired first, as the second 
AP makes it impossible to determine the after-hyperpolarization. Instead, in these 
cases the first singular AP was used. Threshold voltage Vthresh was measured at 
the inflection point (point of largest second derivative before AP peak); amplitude 
Vamp was measured as the difference between Vthresh and the peak voltage of the 
AP; halfwidth was measured at half voltage difference between Vthresh and 
maximum of AP; after-hyperpolarization VAHP was measured as the difference 
between Vthresh and the voltage minimum following an AP (Fig. 2.3A). Because 
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we observed a clear dependency of Vamp and halfwidth on access resistance 
Racc, values were pooled for each age group and subsequently extrapolated to 
Racc = 0 MΩ using linear regression. Error bars at Racc = 0 MΩ were determined 
from the linear regression (Fig. 2.3B). 

 

 

2.2  Experimental results 
 

2.2.1  Morphological changes during development 

We first analyzed to what extent L2/3 pyramidal neurons change their overall 
morphology during the first weeks of postnatal development. During whole-cell 
recordings, L2/3 cells were filled with biocytin and histologically reconstructed.  

 The main distinguishing feature of L2 from L3 cells are their respective 
morphologies and their position within the neocortex. Fig. 2.4 shows a series of 
example cells from different ages, marked as L2 and L3 cells based on the shape 
of their apical dendrite: While L2 cells usually only had a short apical trunk, their 
apical tuft reached out farther laterally compared to their basal dendrites, while

 

 
Fig. 2.4  Examples of reconstructed morphologies. L2 cells are shown in red, L3 cells in 
green, based on shape of apical dendrite. Broken black line shows pial surface of the 
cortex. Black bars show range of depth of measured cells.  
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the opposite was true for L3 pyramidal cells (Feldmeyer, personal 
communication). Variability in morphological appearance was high though, 
especially when determining the layer from depth beneath pial surface. 

 In order to quantify morphological changes due to development, 
morphologies were converted to hoc-files and read into the NEURON program. 
Fig. 2.5 shows changes in dendritic lengths (basal and apical), which is important 
for estimating the total synaptic input onto the dendritic tree, and changes in 
surface area, which allows an estimate of current densities. Measuring surface 
area is difficult, though, as obtaining diameters by brightfield light microscopy is 
bound to errors due to resolution, and spines add their surface at least partially to 
that of the respective dendritic arbor. 

 

 
Fig. 2.5  Morphological parameters measured in NEURON from all reconstructed cells. A, 
length of dendritic protrusions. B, surface areas. See legend at bottom of graph. 

 

 As can be seen from Fig. 2.5, morphological maturation took place until 
p28, judged by dendritic length. There was no significant difference between total 
length of basal and apical dendrites. Dendritic surface area did change 
accordingly compared to dendritic length. One has to keep in mind, though, that 
some dendrites might be cut during the slicing procedure. The length of basal 
dendrites in particular might have been underestimated since somata were 
invariably close to the slice surface. This is especially true for p45-cells, as 
imaging using IR-DIC becomes more difficult due to myelination of axons as age 
increases. This makes it more likely that more basal dendritic processes of p45 
cells were cut as somata lay closer to the slice surface.  
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Sholl analysis  

For a more detailed analysis of morphologies, we performed a Sholl analysis 
(Sholl, 1953) utilizing the NeuroExplorer software package (MicroBrightField Inc., 
VT, USA). Briefly, a series of concentric spheres of increasing radius r (difference 
Δr = 10 μm) were placed around the center of the soma, and the number of 
nodes (branchpoints), endings and total dendritic length per sphere volume were 
measured as a function of r. 

 The results of the Sholl analysis are shown in Figs. 2.6 and 2.7. 
Consistent with the analysis of total dendritic length (Fig. 2.5), most 
morphological changes take place between p8 and p14. All values show a 
bimodal distribution for apical dendrites, while for basal dendrites only one mode 
was observed. Complexity (as measured of total numbers of nodes and 
endpoints) stayed constant for basal dendrites, while for apical dendrites the 
complexity seems to decrease from p8 to p14. However, reconstruction of p8 
cells was difficult because of stained neighboring L2/3 pyramidal cells. The 
staining of nearby cells can have different reasons: (1) as a small positive 

 

 

Fig. 2.6  Results of Sholl analysis for apical dendrites. Cumulative plot of total dendritic 
length L, number of nodes and number of endings versus sphere radius r. Grey, values for 
single cells; red, averages for each age-group. Error bars were omitted for clearness. 
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Fig. 2.7  Results of Sholl analysis for basal dendrites. Cumulative plot of total dendritic 
length L, number of nodes and number of endings versus sphere radius r. Grey, values for 
single cells; red, averages for each age-group. Error bars were omitted for clearness. 

 

pressure is applied at the pipette’s tip when it is moved into the slice, in very 
young animals this might be sufficient to slightly disrupt the cell membrane so 
that small amounts of biocytin may enter the cell; (2) biocytin is transported via 
gap junctions, which are present with an increased number in young animals 
(Connors et al., 1983; Rorig et al., 1995; Yuste et al., 1995; for a review see 
Bruzzone & Dermietzel, 2006), from the primarily stained cell to neighboring 
cells. One way or the other, disentangling of dendrites was difficult and small 
dendritic processes from other cells might have been accidentally appended to 
the cell under investigation, thereby artificially increasing the complexity. Also, 
filopodia might have been mistaken for small dendritic processes. 

 As the Sholl analysis of dendritic length and complexity did not disclose a 
clear difference between L2 and L3 pyramidal cells, an additional analysis was 
performed based on the number of intersections per sphere of basal dendrites 
(Sholl, 1953). Empirically, different cell types can be distinguished by calculating 
the slope b of a logarithmic plot of the number of intersections NInt of a given 
sphere, divided by the volume V of that sphere: 
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 bra
V
NInt +=log        (2.4) 

The results are shown in Fig. 2.8. While the y-axis intercept stayed constant with 
age (Fig. 2.8C), the slope became shallower (Fig. 2.8B). The analysis did not 
reveal two populations. We therefore conclude that based on their basal dendritic 
morphology L2 and L3 pyramidal cells cannot be distinguished. However, we 
cannot exclude differences based on apical tuft morphologies. 

 

 
Fig. 2.8  Analysis of intersections per volume for basal dendrites. A, log-plot of 
intersections per volume against radius of respective sphere for different age groups. 
Thick red line, average of single cells (grey lines); broken red line, linear regression fit to 
average. B, slope of linear fits versus ages. C, y-axis interceptions of linear fits versus 
ages. 

 

 In conclusion, most morphological changes are finished between p14 and 
p21. These changes effect dendritic length and thereby the receptive volume, but 
not the complexity of the dendritic sub-trees. In all age groups, no clearly 
quantifiable differences were found between L2 and L3 pyramidal cells.  
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2.2.2  Sub-threshold properties of L2/3 pyramidal cells 

Age-dependence of input resistance and anomalous rectification 

We next characterized the sub-threshold voltage-current (V-I) relationship of L2/3 
pyramidal neurons using long (500 ms) somatic current injections. Fig. 2.9 shows 
examples of original data obtained from whole-cell recordings of cells at different 
developmental stages. The corresponding steady-state V-I relationships are 
plotted as the steady-state voltage deflection versus injected current. 

 We analyzed the cell’s input resistance Rin, which is the slope of the V-I 
relationship at resting membrane potential Vrest, and the rectification properties. 
Equally spaced current injections did not elicit equally spaced voltage responses 
at the soma of L2/3 pyramidal cells. Instead of outward rectification as would be 
appropriate for the ion concentration gradients across the membrane and a K+ 
leak current, we generally observed inward rectification. Because this behavior is 
contradictory to a passive scenario following equation 1.7, it is termed anomalous 
rectification (AR). 

 

 
Fig. 2.9  Sub-threshold properties of L2/3 pyramidal cells during development. Upper row, 
examples of whole-cell recordings from cells at different ages. Broken line is 0 mV. Middle, 
somatic current injections leading to the voltage traces in upper row. Bottom, steady-state 
voltage deflections from resting potential following current injections. Axis intercept at 0 
mV and 0 pA. Red line is the best fit using equation 2.5. 
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 In order to quantitatively asses AR, V-I-curves were fitted by the simplest 
non-linear function, a second order Taylor series expansion around resting 
potential (Waters & Helmchen, 2006): 

       (2.5) 2)( IcIRIV ARin +=Δ

where ΔV is the voltage deflection from resting membrane potential. Rin denotes 
the somatic input resistance at resting membrane potential and cAR is a 
rectification parameter, i. e. the deviation from ohmic behavior. Positive values of 
cAR correspond to a V-I-relationship with positive curvature (increasing slope 
resistance, i.e. inward rectification) as observed in L2/3 pyramidal neurons.  

 To quantify in detail the age dependency of Rin and cAR in L2/3 pyramidal 
cells, we performed the experiments described above for rats at ages postnatal 
day 8 (p8) (n = 27(from 5 animals)), p14 (n = 57(16)), p21 (n = 16(3)), p28 (n = 
33(13)) and p45 (n = 9(3)). A strong decrease of Rin from 217 ± 15 MΩ to 60 ± 7 
MΩ was observed between p8 and p45 (p < 0.01). This decrease could be well 
approximated by an exponential curve with a time constant of around ten days 
(9.4 ± 2.7 days). The curve levels out at 47 ± 16 MΩ (Fig. 2.10A, red curve). 
During the same period of development, cAR also showed a large reduction: 
While at p8 the cAR-value is 171 ± 27 MΩ/nA, it decreased over a period of a few 
days around p21 to a steady value of 39 ± 4 MΩ/nA (p < 0.01, Fig. 2.10B).   

 

 
Fig. 2.10  Age dependencies of input resistance and anomalous rectification. A, Rin versus 
age. Exponential fit in red. B, cAR versus age.  

 

 We showed here that L2/3 pyramidal neurons markedly change their basic 
biophysical properties during the first postnatal weeks. As will be further 
discussed throughout the thesis, these changes should have pronounced 
influence on how L2/3 pyramids act within their local networks. 
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Cells become more hyperpolarized as they mature 

The resting membrane potential Vrest shifted to more hyperpolarized values as 
the L2/3 cells matured: -64 ± 1 mV at p8 and -80 ± 2 mV at p45 (p < 0.01). Again, 
this can be fitted by a single exponential with a steady state value of -80 ± 1 mV 
and a decay time constant of 8 ± 1 days (Fig. 2.11). A change in Vrest may 
indicate changes in the density and composition of ion channels in the 
membrane, which would be consistent with the changes in input resistance (see 
chapter 2.3.3). 

 

 
Fig. 2.11  Resting membrane potential versus age. Red line depicts best fit using a mono-
exponential function. 

 

 p8 p14 p21 p28 p45 

Vrest / mV -64 ± 1 -72 ± 1 -78 ± 1 -79 ± 1 -80 ± 2 

Rin / MΩ 217 ± 15 150 ± 4 89 ± 8 55 ± 4 60 ± 7 

cAR / MΩ/nA 171 ± 27 189 ± 8 125 ± 16 53 ± 5 39 ± 4 

Table 2.1  Basic sub-threshold properties of L2/3 pyramidal cells at different ages. 

 

 

The time constant of voltage response is not constant 

The observed change in slope resistance should lead to a change in membrane 
time constant, τm. Since this time constant was not measured exactly the onset 
time constant at the soma, τon, was taken instead (see Fig. 2.1). Exact 
measurement requires the separation of all contributions of longer time constants 
that stem from the fact that neurons, mainly due to dendritic protrusions, do not 
behave like a single, isopotential compartment (“peeling method”; Koch, 1999). 
Since the time constant of an RC circuit is given by τ = R·C, a decrease in τ
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Fig. 2.12  Onset time constant τon versus polarization. Left panel, τon from the bins -30 mV 
< ΔV < -20 mV (filled circles) and 20 mV < ΔV < 30 mV (open circles) versus age. Right 
panel, τon versus ΔV for all ages (color-coded). 

 

indicates a decrease in either R or C. The membrane capacity can be considered 
as constant, leaving only a change in membrane resistance. The sigmoidal 
shape of the curves depicted in Fig. 2.12 thus are consistent with the decrase in 
Rin observed in the V-I relationships in the hyperpolarized regime. Note that for 
the youngest animals this behavior is almost not present whereas for animals 
older than p21 the data settle to the same curve. The decrease in Rin and τon with 
hyperpolarization would be consistent with a voltage-dependent channel that 
activates as membrane potential moves to more hyperpolarized values. One 
obvious candidate would be the Ih current, which will be examined in the next 
paragraph. 

 

Little sag in L2/3 pyramidal cells 

Another characteristic of subthreshold voltage responses is the so-called sag, a 
small hyperpolarization preceding steady-state polarization following negative 
current injections. This effect is attributed to the rather slow activation of the 
hyperpolarization-activated or “queer” current, Ih, which mediates a partial 
repolarization of the cell towards resting potential. 

 We found that relative sag is not very prominent in L2/3 pyramidal cells 
(usually between 5 to 10 %). Fig. 2.13 shows the development of the sag as the 
cells mature. The two values around ΔV = 0 are to be considered with caution 
since polarizations are small and the way the sag is analyzed does not 
distinguish real sag from noise. Our finding is consistent with previous studies on 
L2/3 neurons and suggests that, unlike L5 pyramidal neurons – Ih is not 
expressed to a high level in L2/3 pyramidal cells (see chapters 2.3.2 and 3.2.2). 
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 Sag in the depolarizing regime might have two different causes: First, Ih 
deactivates rather slowly, thus following the membrane voltage with a delay, and 
second, partial activation of Na+ currents not sufficient for AP generation might 
lead to a positive initial “bump” superimposed on the depolarization timecourse. 

 

 
Fig. 2.13  Relative sag versus polarization. Left panel, relative sag from the bins -30 mV < 
ΔV < -20 mV (filled circles) and 20 mV < ΔV < 30 mV (open circles) versus age. Right panel, 
relative sag versus ΔV for all ages (color-coded). Points around resting potential (ΔV = 0, 
grey area) are difficult to interpret due to noise.  

 

 

Pyramidal cells from L2 and L3 do not differ in their subthreshold properties 

As was shown in chapter 2.2.1, L2 and L3 cells do not differ significantly in their 
shape. However, this does not exclude differences in their electrophysiological 
behavior. In order to adress this question a Spearman’s rank test (eq. 2.2 was 
performed, comparing sub-threshold electrophysiological parameters with the 
soma’s distance to pial surface dpia. At age p14, a highly significant negative 
correlation between cAR and dpia was found (rSP = -0.44, p = 0.0049) and a 
significant (p = 0.0141) negative correlation between Rin and dpia (rSP = -0.39). At 
p45, Vrest was highly significantly correlated to dpia (rSP = -9.3, p = 0.0008). 
Additionally, a significant negative correlation was found for Rin (rSP =    -0.82, p = 
0.0108) and for cAR (rSP = -0.75, p = 0.0255). These correlations at p45 might be 
due to small sample size, though. No significant correlations were found at other 
ages examined (Table 2.2).  

 In conclusion, no consistent (similar rSP and significance) correlations 
between electrophysiological and morphological parameters were found over 
theages examined, meaning that L2 and L3 pyramidal cells cannot be 
distinguished by their sub-threshold properties alone and will behave the same 
way in respect to somatic integration. Nevertheless, we observe the trend that Rin 
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and cAR decrease with dpia. This notion is coherent with the idea that proximal 
apical diameter increases with depth, thereby adding additional current drain to 
the cell and decreasing Rin. 

 

 p8 p14 p21 p28 p45 

Vrest

-0.1256 

0.5325 

-0.0437 

0.789 

0.415 

0.1099 

0.239 

0.1734 

-0.9333 

0.0008 

Rin

-0.2569 

0.1958 

-0.3854 

0.0141 

-0.3782 

0.1486 

-0.838 

0.6374 

-0.8167 

0.0108 

cAR

-0.2438 

0.3204 

-0.4363 

0.0049 

-0.4371 

0.0905 

-0.1526 

0.389 

-0.75 

0.0255 

Table 2.2  Correlation coefficients and p-values for Spearman’s rank test of sub-threshold 
electrophysiological parameters versus dpia. Significant (p < 0.05) correlations are marked 
in orange, highly significant (p < 0.01) correlations are marked in red. 

 

 

2.2.3  Supra-threshold properties of L2/3 pyramidal cells 

Action potentials become larger and sharper as the cells mature 

Besides the sub-threshold properties we also examined the overall firing 
behavior of L2/3 pyramidal cells. The first question here was whether the 
waveform of action potentials (APs) changes while the cells mature. Several AP 
properties were examined: Threshold Vthresh for AP firing, AP amplitude Vamp, AP 
halfwidth and after-hyperpolarization VAHP. Age-dependent changes of these 
properties are summarized in Fig. 2.14. 

 While resting membrane potential and the threshold for AP generation 
shifted in parallel to more hyperpolarized values as age increased, the absolute 
peak voltages of APs increased. These two effects lead to an increase in AP 
amplitude from 66 ± 1 mV at p8 to 94 ± 2 mV at p45 (Fig 2.14A). The after-
hyperpolarization increases only slightly during this time span (Fig. 2.14C). 
Additionally, the AP half-width decreases by a factor of almost two: (1.4 ± 0.2) ms 
at p8 to (0.8 ± 0.1) ms at p45 (Fig. 2.14B). APs thus become larger and sharper 
as L2/3 pyramidal cells mature. 
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Fig. 2.14  Age-dependency of action potential properties. A, Vrest, Vthresh and Vamp plotted 
versus age. Error in peak amplitude is standard deviation, since the values stem from 
linear regression. B, AP halfwidth versus age. Displayed are means ± standard deviation, 
since the values were obtained from linear regression. C, VAHP versus age. 

 

 p8 p14 p21 p28 p45 

Vthresh / mV -28 ± 1 -34 ± 1 -35 ± 1 -35 ± 1 -37 ± 2 

Vamp / mV 66 ± 1 84 ± 0 76 ± 1 86 ± 1 94 ± 2 

halfwidth / ms 1.4 ± 0.0 1.2 ± 0.0 1.1 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 

VAHP / mV -14 ± 1 -14 ± 0 -14 ± 1 -15 ± 1 -13 ± 1 

Table 2.3  Supra-threshold properties of L2/3 pyramidal neurons at different ages 

 

 

Firing behavior 

In order to characterize the cell’s ability to fire APs, steady state firing frequency 
was determined by calculating the inverse of the inter-spike interval (ISI) of the 
last two APs of an AP train. Only trains of more than three APs were taken into 
account, for the occurrence of doublets at the beginning of a train inevitably leads 
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to an overestimation of frequency. In Fig. 2.15, AP frequencies are displayed 
versus the current injected at the soma (so-called f-I curves). Variability is very 
high, seems to be non-Gaussian and most probably originates from two sources: 
(1) the steady state firing frequency might differ between cells; (2) variability in 
Rin and cAR leads to different depolarization upon current injection and thus to 
different AP frequencies.  

 

 
Fig. 2.15  AP frequencies versus somatically injected currents. Ages are color coded. 

 

The f-I curves were analyzed using an exponential function of the form 
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where fmax is the saturation frequency, I0 the minimal current needed for a single 
AP, and Ic the space constant. Results are shown in Fig. 2.16. While the 
saturation frequency fmax stayed almost constant (40.2 ± 4.1 Hz at p8 and 31.2 ± 
4.9 Hz at p45, p = 0.28), the minimal current needed to evoke an AP, I0, 
increased by a factor of roughly 3 from 124 ± 10 pA at p8 to 336 ± 81 pA at p45 
(highly significant, p < 0.01). This increase is attributable to the decrease in Rin 
and cAR. The space constant Ic shows a trend towards higher values as age 
increases (153 ± 21 pA at p8 versus 246 ± 49 pA at p45, p = 0.057) but with a 
maximum at p21 of 381 ± 49 pA which is highly significant versus the value at p8 
(p < 0.01) but not p45 (p = 0.099).  

 Thus, f-I curves generally shift to the right and become steeper during 
development. This developmental profile indicates that the way L2/3 pyramidal 
cells integrate synaptic input as well as the resulting AP patterns in vivo will 
largely change during this period.  
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Fig. 2.16  Analysis of f-I curves using equation 2.6. A, saturation frequency fmax versus age. 
B, minimal current I0 (closed circles) and space constant Ic (open circles) versus age. 

 

 

L2 and L3 pyramidal cells do not differ in their supra-threshold properties 

In order to assess whether AP waveforms differ between L2 and L3 pyramidal 
cells, we again calculated the Spearman correlation coefficients between supra-
threshold parameters and dpia. The results are listed in Table 2.4. Except for 
Vthresh at p45 (rSP = -0.85, p = 0.0061), no significant correlations were found.  

 

 p8 p14 p21 p28 p45 

Vthresh

-0.044 

0.8274 

0.127 

0.435 

-0.0015 

0.9957 

0.044 

0.8051 

-0.85 

0.0061 

Vamp* 
0.0293 

0.8845 

0.2135 

0.1858 

0.1179 

0.6636 

-0.1645 

0.3524 

0.1667 

0.6777 

VAHP

0.0509 

0.8010 

-0.2948 

0.0648 

-0.078 

0.774 

-0.1626 

0.3584 

-0.0333 

0.9484 

Halfwidth* 
-0.0975 

0.6285 

-0.1158 

0.4767 

-0.0548 

0.8402 
 

-0.4895 

0.1828 

Table 2.4  Correlation coefficients and p-values for Spearman’s rank test of supra-
threshold electrophysiological parameters versus Dpia. Significant (p < 0.05) correlations 
are marked in orange, highly significant (p < 0.01) correlations are marked in red.* Vamp and 
halfwidth are also correlated to Racc. 

 

 In conclusion, during postnatal development L2/3 pyramidal cells show 
enhanced temporal fidelity in their responses to somatic current injection, with 
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reduced somatic time constant and sharper AP waveform. On the other hand, 
L2/3 cells become less excitable as they mature, which is reflected in the 
decrease in Rin and cAR. Thus, more synaptic input is required to raise the 
membrane potential above Vthresh. 

 

 

2.2.4  Pharmacological Experiments 

We found that L2/3 pyramidal neurons display prominent anomalous rectification 
at all ages. Such rectifying properties can only be explained by the presence of 
voltage-gated channels, indicating that L2/3 neurons even near resting potential 
are not passive electric compartments. These non-passive properties may have 
a strong influence on how synaptic inputs are integrated in these cells, and we 
therefore next investigated which type of voltage-dependent current underlies 
AR. We tested three potential candidate currents, namely persistent sodium 
current (NaP), nonspecific hyperpolarization-activated current (Ih), and an 
inward-rectifying potassium current (KIR). Pharmacological experiments were 
performed at two postnatal ages, p14 and p28, to show that the same 
mechanism is responsible for anomalous rectification at different levels of cell 
maturation. 

 

Persistent Na-channels are not responsible for anomalous rectification 

One type of channel that could contribute to AR is the persistent Na-channel 
(NaP) (reviewed in Taylor, 1993). This channel is a non-inactivating channel that 
activates as the membrane is depolarized. Thereby the channel changes Rin in 
the depolarizing regime, whereas in the hyperpolarizing regime the neuron would 
exhibit a nearly passive behavior. Since the channel’s reversal potential is well 
above 0 mV (equation 1.4), activation of NaP would lead to a constant influx of 
sodium ions, generating a current that further depolarizes the membrane, i. e. 
increasing the voltage deflection following current injection. 

 To test for this channel, the specific NaP-blocker phenytoin (PT, also used 
as an anti-epilepticum; Woodbury, 1980) was applied using a concentration of 
200 μM (Lampl et al., 1998). No significant changes in Rin and cAR were observed 
(Fig. 2.17): Rin remained unchanged at age p14 (137 ± 14 MΩ versus 132 ± 13 
MΩ, p > 0.05, paired t-test, n = 5(from 2 animals)) and increased slightly at p28 
(60 ± 14 MΩ versus 70 ± 16 MΩ, p > 0.05, n = 6(3)) while cAR did decrease 
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slightly at p14 from 146 ± 36 MΩ/nA to 120 ± 25 MΩ/nA (p > 0.05, n = 5(2)) but 
increased at p28 from 76 ± 15 MΩ/nA to 81 ± 20 MΩ/nA (p > 0.05, n = 6(3)).  

 

 

 
Fig. 2.17  Changes in sub-threshold behavior following application of 200 μM phenytoin. A, 
changes in Rin. B, changes in cAR. Averaged data are displayed in red. 

 

 In order to check whether other, perhaps phenytoin-insensitive Na-
channel might contribute to anomalous rectification, we also extracellularly 
applied 1 μM TTX (tetrodotoxin, a very potent Na-channel blocker extracted from 
the blowfish (fam. Tetraodontidae)) during recordings (reviewed in Marban et al., 
1998; Fozzard & Hanck, 1996). The effectiveness of TTX-application was judged 
by the absence of APs even at high depolarizing current injections. 

 Application of TTX also did not show any significant effect on anomalous 
rectification as well as input resistance (Fig. 2.18): Rin decreased from 153 ± 10 
MΩ to 147 ± 12 MΩ (p > 0.05, n = 7(3)) at p14 and from 40 ± 3 MΩ to 38 ± 2 MΩ 
(p > 0.05, n = 7(2)) at p28 while cAR decreased at p14 from 147 ± 17 MΩ/nA to 
140 ± 15 MΩ/nA (p > 0.05, n = 7(3)) and from 27 ± 3 MΩ/nA to 22 ± 2 MΩ/nA (p 
> 0.05, n = 7(2)) at p28. These results show that subthreshold activation of 
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sodium currents is not a major determinant of rectification in L2/3 pyramidal 
neurons. 

 

 
Fig. 2.18  Changes in subthreshold behavior following application of 1 μM TTX. A, changes 
in Rin. B, changes in cAR. Averaged data are displayed in red. 

 

 

Application the of Ih blocker ZD7288 does not abolish anomalous rectification 

Although hyperpolarization activated current Ih – as judged from the amount of 
sag – is less prominent in L2/3 compared to L5 pyramidal neurons it could still 
play a role in mediating anomalous rectification. In order to test this hypothesis 
the Ih blocker ZD7288 (BoSmith et al., 1993; Lüthi et al, 1998a) was applied in 
the bath solution. Effectiveness was judged by the absence of sag following 
hyperpolarizing current injections. However, in some cases it was difficult to 
judge whether sag was absent, since even after prolonged application of ZD7288 
a kink seemed to be superimposed on the exponential curve expected for a 
merely passive cell (see Fig. 2.19A). While Rin increased following application of 
ZD7288 (at p14 from 157 ± 17 MΩ to 213 ± 16 MΩ (p < 0.01 , n = 6(3)) and at 
p28 from 64 ± 10 MΩ to 114 ± 5 MΩ (p > 0.05, n = 6(2)); Fig 2.20A), no 

 48



2  Experiments 

significant changes in anomalous rectification could be observed after application 
of ZD7288: At p14, cAR decreased from 163 ± 23 MΩ/nA to 133 ± 31 MΩ/nA (p > 
0.05, n = 6(3)) but at p28 it increased from 44 ± 5 MΩ/nA to 63 ± 7 MΩ/nA (p > 
0.05, n = 6(2); Fig 2.20B). Note that the V-I curves are not completely linear (Fig. 
2.19B). Instead, the curves seem to decompose into two linear components 
which meet at around 20 mV below resting potential. This effect makes the 
quadratic fit much worse than in the control situation, such that the values for Rin 
and cAR have to be considered with caution.  

 

 
Fig. 2.19  Effect of 50 μM ZD7288 on sub-threshold voltage response at two different ages 
(p14 and p28). A, raw data traces before and after application of ZD7288 (APs are cut off at 
0 mV) and current injections. B, steady-state VI-curves derived from raw traces (open 
circles: control; filled: 50 μM ZD7288). 

 

 Although ZD7288 seems to have an effect (if not significant) on the 
subthreshold behaviour of L2/3 pyramidal cells, interpretation of the data 
presented in Fig. 2.19 is not that straight forward: In addition to changes in Rin 
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Fig. 2.20  Changes in subthreshold behavior following application of 50 μM ZD7288. A, 
changes in Rin. B, changes in cAR. Averaged data are displayed in red. 

 

 

 
Fig. 2.21  Effect of 50 μM ZD7288 on AP waveform. A, example of APs before (black) and 
after (red) application of ZD7288 (p28). Note that besides the effect on AP halfwidth the 
amplitude and shape in general is effected. B, effect of ZD7288 on AP halfwidth. 
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and cAR a broadening of action potentials was observed (Fig 2.21). At p14, AP 
halfwidth increased from 1.6 ± 0.3 ms to 3.4 ± 0.6 ms (p < 0.05, n = 6(3)) and at 
p28 from 1.3 ± 0.1 ms to 6 ± 1.2 ms (p = 0.01, n = 6(2)). Thus, besides the well-
known blocking of Ih, ZD7288 might also exert unspecific effects on other 
channels in L2/3 pyramidal cells, like delayed rectifier K-channels that are largely 
responsible for AP repolarization. 

 

Blockage of KIR with 50 μM BaCl2 abolishes anomalous rectification 

Following a publication by Day et al. (2006) one remaining candidate for 
mediating anomalous rectification was the inward rectifying K-channel (KIR). In 
order to test the hypothesis that KIR is responsible for anomalous rectification in 

 

 
Fig. 2.22  Effect of 50 μM BaCl2 on sub-threshold voltage response at two different ages 
(p14 and p28). A, raw data traces before and after application of BaCl2 and current 
injections (APs are cut off at 0 mV). Lower row, steady-state VI-curves derived from raw 
traces (open circles: control; filled: 50 μM BaCl2). 
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L2/3 pyramidal neurons low concentration of Barium chloride (BaCl2) was applied 
during current clamp experiments (Coetzee et al., 1999).  

 As can be seen in Fig. 2.23B, cAR was significantly reduced for p14 from 
243 ± 13 MΩ/nA to 17 ± 22 MΩ/nA (p < 0.001, n = 16(5)). For p28 the same 
tendency was observed although the change was not significant (from 43 ± 5 
MΩ/nA to 31 ± 6 MΩ/nA (p = 0.21, n = 10(3)). This might be due to the fact that 
already in control experiments anomalous rectification is not very pronounced in 
p28 cells and thus a change to even smaller values is difficult to observe. In 
some experiments at p14 cAR became negative, meaning the V-I-curve was bent 
into the opposite direction. At the same time, Rin increased for both ages: p14: 
from 161 ± 7 MΩ to 206 ± 10 MΩ (p < 0.001, n = 16(5)); p28: from 50 ± 4 MΩ to 
93 ± 6 MΩ (p < 0.005, n = 10(3); Fig. 2.23A). 

 

 
Fig. 2.23  Changes in sub-threshold behavior following application of 50 μM BaCl2. A, 
changes in Rin. B, changes in cAR. Averaged data are displayed in red. 
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Spermine does not effect anomalous rectification 

Connecting a cell’s interior to a large reservoir of solution with a different ion and 
molecule composition – e.g. a patch pipette - leads to so-called wash-out effects: 
Fast diffusing molecules are washed out of the cell into the patch pipette where 
they are not present at the beginning. One type of these molecules are small 
polyamides that might be responsible for the voltage-dependent block of KIR 
channels (Bichet et al, 2003). Thus, in a series of control experiments in cells of 
two weeks old animals (p14) the polyamide spermine was added to the 
intracellular solution at a concentration of 100 μM (Ficker et al., 1994). 

 

 
Fig. 2.24  Effect of 100 μM spermine (intracellular) on Rin (left) and cAR (right) in two weeks 
old animals. Red, with spermine; black comparison with other experiments without 
spermine. 

 

 Application of 100 μM spermine did not lead to a significant change in 
anomalous rectification (Fig. 2.24B): 189 ± 8 MΩ/nA without spermine (n = 
57(16)) versus 160 ± 7 MΩ/nA (p > 0.05, n = 8(2), unpaired t-test) with spermine; 
also, additional extracellular application of 50 μM BaCl2 reduced cAR completely 
down to -5 ± 16 MΩ/nA (p < 0.001, n = 5(2)). Different from control experiments, 
though, application of BaCl2 did not lead to a significant increase in Rin, whereas 
in all other experiments where BaCl2 was applied an increase was observed (Fig. 
2.24A). 
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2.3  Discussion 
In this study we measured the biophysical properties of L2/3 pyramidal neurons 
during the first 6 weeks of postnatal development. The most important finding 
was a non-linear V-I relationship at all ages, which is well described by a second-
order polynomial fit. Both coefficients of this fit, i.e. the linear input resistance Rin 
and the non-linear anomalous rectification (AR) coefficient cAR, decrease with 
age. In pharmacological experiments we could show that AR is mainly 
attributable to inward-rectifier K+ channels (KIR), while the contribution of the 
hyperpolarization-activated current Ih is small at best. 

 In the following paragraphs we will (1) discuss these experimental findings 
in the light of previous studies on the development of cortical neurons; (2) briefly 
review the ion channels that most likely contribute to the observed effects; and 
(3) present a re-interpretation of AR, which is based on the Hodgkin-Huxley 
formalism for describing ion channel kinetics. 

 

 

2.3.1  Biophysical properties and development of L2/3 pyramidal neurons 

The majority of previous studies on L2/3 pyramidal neurons have investigated 
cells from adult animals of more than 4 weeks of age. Thus, we will first compare 
our data from adult animals (steady-state) to these studies and then discuss the 
changes in biophysical properties that occurred during postnatal development. 

 

Sub-threshold properties of adult L2/3 pyramidal cells 

The input resistance Rin of L2/3 pyramidal neurons was found to be 47 ± 16 MΩ, 
which is consistent with the range for Rin (25 to 45 MΩ) found in previous studies 
(Hwa & Avoli, 1991; Schroder & Luhmann, 1997; Traub et al., 2003; Waters et 
al., 2003; Larkum et al., 2007). Similarly, the resting membrane potential of Vrest = 
80 ± 1 is in the agreement with these previous studies (-72 to -81 mV), although 
it lies at the more hyperpolarized end of the range. Onset time constant is difficult 
to compare, because we found it to be voltage-dependent, while in other studies 
it is always presented with respect to current injections. Waters & Helmchen 
(2006) found 9 ms and Larkum et al. (2007) found 8 ms in rats of age around 
p28, which corresponds to our value for the voltage bin from 0 to -10 mV, while 
our value in the bin from -10 to -20 mV (which rather corresponds to the 
hyperpolarizations used for analyzing τon in the aforementioned studies) was 7 

 54



2  Experiments 

ms. This shift towards slightly faster time constants might have been introduced 
by the accounting for access resistance Racc in our analysis.  

 The effect of AR in identified L2/3 pyramidal neurons was to our 
knowledge first described by Hwa & Avoli (1991). Unfortunately, the authors did 
not quantify, nor did they determine which specific channel types were 
responsible for this effect. Alonso & Klink investigated this effect in L2 cells of the 
rat entorhinal cortex and attributed it to TTX-sensitive persistent sodium currents 
(Alonso & Klink, 1993; Klink & Alonso, 1993). Recently, Waters & Helmchen 
(2006) provided a more quantitative analysis of AR in L2/3 pyramidal neurons in 
vivo using a second-order polynomial fit to steady-state V-I curves (equation 2.5). 
Their value as obtained under in vivo conditions (cAR = 18.7 ± 3.7 MΩ/nA) is 
pronouncedly lower than the value found in this study (cAR = 39 ± 4 MΩ/nA). In 
another recent in vitro study, Larkum et al. (2007) found a value of 37 ± 1 MΩ/nA, 
which is in good agreement with our value. As in the in vivo study of Waters & 
Helmchen Rin was also lower than in our study (29 MΩ versus 47 MΩ), we 
assume that additional modulatory effects might influence the biophysical 
properties of L2/3 pyramidal neurons in vivo even during DOWN-states. In none 
of the aforementioned studies the mechanism mediating AR was elucidated. 
Both Hwa & Avoli (1991) and Waters & Helmchen (2006) applied intracellularly 
the drug QX 314 to block Na+ channels (Connors & Prince, 1982). However, this 
drug is also known to affect other channels, in particular K+ channels (e.g. 
Nathan et al., 1990). Therefore, any conclusion derived from those experiments 
has to be taken with caution. It was noted, though, that Ih most likely is not 
responsible for AR, because of its near absence in L2/3 pyramidal neurons (Hwa 
& Avoli, 1991; Schroder & Luhmann, 1997; in this study, see lack of sag in Fig. 
2.13). One likely consequence of AR might be that during summation of synaptic 
inputs, a loss of membrane resistivity due to increase in synaptic conductance is 
compensated for. Thus, PSPs which arrive during a train of EPSPs experience 
the same weighting at the soma. This aspect will be explored further in chapter 
3.2.4. 

 

Supra-threshold properties of adult L2/3 pyramidal cells 

Action potential waveform and firing properties in L2/3 cells were very consistent 
with previous studies. As was noted before (Schroder & Luhmann, 1997), L2/3 
pyramidal neurons were of the regular spiking (RS) type, showing almost no 
firing frequency adaptation during long constant current injections except during 
the first three APs. However, rhythmic bursting in these cells as reported by 
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Traub et al. (2003) was not observed in our experiments. Reasons for this 
discrepancy might be severalfold, including the use of preparatory depolarizing 
current injection in their study, differences in brain area and anesthesia, as well 
as their using sharp electrodes (additional leak in comparison to patch pipettes). 
AP halfwidth and amplitude Vamp were calculated to be around the same value as 
was found by Larkum et al. (2007).  

 

Comparison with L5 pyramidal neurons 

Some of the differences to the more thoroughly examined L5 pyramidal neurons 
are as follows: (1) L2/3 pyramids are much smaller with respect to dendritic 
extension. Following Zador et al. (1995), this makes L2/3 pyramids considerably 
more compact electrically. In particular the apical tuft, which in L5 pyramidal cells 
is electrically fairly uncoupled from the soma and the basal dendrites, might be 
much closer electrotonically in L2/3 pyramids, allowing single distal EPSPs to 
have a greater impact on somatic integration. (2) Ih is much more prominent in 
L5 pyramidal neurons, leading to sag values of 20-30% upon hyperpolarization in 
comparison to a maximum of 10% in L2/3 pyramids. We cannot exclude, 
however, that dendritic Ih density increases with distance from soma, as was 
shown for L5 pyramidal cells (Kole et al., 2006), which would have strong 
implications for dendritic integration (see below). (3) Prominent AR has not been 
reported in L5 pyramidal cells in rats. The somatic V-I relationships of L5 
pyramidal neurons is nearly linear at all ages (Zhu, 2000), likely due to the 
balancing effect of Ih and KIR as reported by Day et al. (2006). However, 
presence of persistent Na+-channels in L5 pyramidal cells has been reported to 
mediate AR in cat sensori-motor cortex (Stafstrom et al., 1982; Stafstrom et al., 
1985), implying that the behavior of these cells might differ from one species to 
another. (4) All cells encountered in L2/3 were of the regular spiking (RS) type, 
while in L5 a sub-population exhibits intrinsic bursting (IB) properties (Connors et 
al., 1982; McCormick et al., 1985; Changac-Amitai et al., 1990). In addition, even 
with strong depolarizing current injections, it was nearly impossible to elicit three 
APs with a mean frequency of more than 80 Hz. This suggests that under in vivo 
conditions, even during UP-states, L2/3 pyramidal neurons rarely fire more than 
2 APs at high frequency, resulting in sparse firing in these layers (Brecht et al., 
2003; Kerr et al., 2005; Waters & Helmchen, 2006; de Kock et al., 2007). This is 
inconsistent with the finding that regenerative events in the apical dendrite can 
be evoked at critical frequencies above 100 Hz (Larkum et al., 2007). 
Furthermore, Waters et al. (2003) reported strong Ca2+-influx upon trains of 2 to 5 
APs at 150 Hz in vivo, while this influx was greatly reduced at 50 Hz with the 

 56



2  Experiments 

same number of APs. Indeed, 2 APs at 150 Hz elicited the same Ca2+-influx as 4-
5 APs at 50 Hz. We conclude that these supralinear summation effects and Ca2+-
influx might occur only very rarely and only upon extremely strong synaptic 
inputs.  

 In this study, we examined the postnatal development of the 
morphological and biophysical properties of L2/3 pyramidal cells between p8 and 
p45. All changes found indicate that these neurons become less receptive 
electrophysiologically to single PSPs as they mature. This will be discussed in 
detail in the following paragraphs. 

 

Morphological development 

Most changes in morphology take place within the first two postnatal weeks 
(Figs. 2.5-2.8). Primarily, dendritic branches grow out, shifting distributions of 
nodes and endings towards longer distances. However, on average no new 
dendritic compartments are added during development. Rather, between p8 and 
p14, elimination of small apical branches seems to take place. As was pointed 
out, though, various error sources might bias the number of dendritic branches 
towards higher values. Also, in a study on the development of L5 pyramidal cells 
(Zhang, 2004), no decrease in complexity was obvious, although morphological 
parameters were not quantified. Schroder & Luhmann (1997) pointed out in their 
study of adult cells, that the complexity of the basal tree is higher than that of the 
apical tree. We could not confirm this notion, as at all ages number of nodes and 
endings did not differ significantly between these two sub-trees.  

 Most surprisingly, no clear difference between L2 and L3 pyramidal cells 
was found based on morphological analysis. This is in contradiction to the 
empirical observation (also in this study), that L2 pyramidal cells extend more 
laterally with their apical tuft than L3 pyramidal cells (Fig. 2.4) and to findings that 
L2 and L3 pyramidal cells in somato-sensory areas receive different inputs from 
deeper brain areas (Shepherd & Svoboda, 2005; Bureau et al., 2006). However, 
for a detailed analysis, not enough morphologies were retrieved, and we most 
probably did not cover the whole spectrum of L2/3, with most cells being 
positioned around the middle of these two layers. 

 

Development of L2/3 pyramidal neuron electrophysiology 

 Changes in Rin and Vrest show a similar time course as the changes found 
in other types of cortical neurons: Rin strongly decreases and Vthresh is shifted to 
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more hyperpolarized potentials. Both changes implicate that the density of K+ 
leak channels increases during development, increasing membrane conductance 
and shifting Vrest towards the K+ reversal potential (eq. 1.7). These modifications 
have also been observed in L5 pyramidal neurons of several cortical regions 
(McCormick & Prince, 1987; Zhu, 2000; Zhang, 2004) and in Cajal-Retzius cells 
in L1 (Zhou & Hablitz, 1996). One possible explanation is that cortical neurons at 
early developmental states try to use all incoming synaptic activity for building 
and consolidating synaptic contacts to other cells in an activity-dependent way 
with maximized gain (here to be understood as number of EPSPs necessary to 
elicit an AP) with high input impedance and a short way to go from Vrest to Vthresh. 
In contrary, at later developmental stages, when the cortical network reaches a 
steady-state of synaptic contacts, single PSPs become less important and 
homeostatic effects take over, reducing the gain to a level where cortical 
computation can take place at minimized metabolic costs and without the system 
to explode in terms of activity. 

 Interestingly, the ability of L2/3 pyramidal neurons to elicit APs did not 
change during the ages, implying that all ionic conductances necessary are 
already inserted at a young age. This can be demonstrated in the following way: 
In order to exclude Rin and cAR as sources of variability, AP frequencies were 
evaluated versus an extrapolated steady state voltage, ΔVextrapolated, using 
equation 2.5 with Rin and cAR of the respective cell. This is illustrated in Fig. 2.25. 
Once the combined effect of different Rin and cAR is excluded, the steady state 
AP frequency shows a similar behavior at all ages. We conclude that the ion 
channels responsible for eliciting APs are built into the membrane at an early age 
already, and are adjusted during development only to sharpen AP waveform. 

 

 
Fig. 2.25  AP frequencies versus extrapolated voltage. Voltages are binned in 10 mV wide 
intervals. Ages are color coded. 
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 Nevertheless, conductance densities presumably do change during 
postnatal development, as AP waveform changes towards larger Vamp and 
smaller halfwidth. In addition, it was observed that young cells exhaust soon 
during longer lasting AP trains, resulting in sub-threshold voltage oscillations as 
not enough fast Na+ channels can be recruited for additional APs. 

 

 

2.3.2  KIR mediates anomalous rectification 

The pharmacological experiments in this study demonstrated that the inwardly 
rectifying K+ (KIR) channel is responsible for anomalous rectification in L2/3 
pyramidal cells. Nevertheless, we cannot exclude a small contribution from other 
channels, mainly hyperpolarization-activated Ih channels, since after blocking 
KIR by low concentrations (50 μM) of Ba2+ the transient onset of voltage 
deflections was not reduced to a simple exponential curve (Fig. 2.22). Rather, an 
exponential transient seemed to be superimposed by the typical sag of Ih 
activation. These results will be discussed in the following sections. 

 

KIR channels in L2/3 pyramidal neurons 

In mammals, 15 gene products related to the KIR family have been classified into 
seven families named KIR1 to KIR7. Structural analysis of the crystal structure of 
a bacterial homolog shows two trans-membrane regions flanking an extracellular 
pore region (Kuo et al., 2003). The KIR channels mediating the strongest inward 
rectification comprise the KIR2 family (KIR2.1-KIR2.4). Recent studies (Pruess et 
al., 2005; Day et al., 2005) employing immuno-histological methods 
demonstrated that all channel types of the KIR2 family are present in neocortex, 
with KIR2.3 showing the highest expression in L2/3 and L5 pyramidal cell somata 
and neuropil. To complicate matters, KIR channels build hetero-tetramers (Yang 
et al., 1995), which virtually renders impossible the exact characterization of the 
KIR channel responsible for AR. 

 It is assumed that the inward rectifying properties of KIR channels are 
voltage-dependent and blocked by intracellular Mg2+ (Vandenberg, 1987; 
Matsuda et al., 1987) and polyamines (Lopatin et al., 1994; Ficker et al, 1994). 
Indeed, the amount of rectification mediated by these channels is defined by their 
characteristic interaction with these intracellular blockers. In our experiments, we 
were concerned about washout of these substances through the patch pipette, 
but addition of 100 μM spermine, a polyamine which was shown to effect KIR 
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channels (Ficker et al., 1994), did not alter AR (Fig. 2.24), showing the validity of 
our approach. 

 

Contribution of Ih to anomalous rectification in L2/3 pyramidal neurons 

As sag is present in L2/3 pyramids (if only to a small amount), we cannot 
completely neglect the effect of Ih-activation on sub-threshold behavior. In 
addition, it was shown in cortical L5 pyramidal neurons that Ih conductance 
density in the apical dendrite exponentially increases with distance from soma 
(Kole et al., 2006), a distribution which might also be present in L2/3 pyramidal 
neurons. Thus, while almost not present at the soma and in proximal regions, this 
channel might still shape synaptic integration in more distal regions of the 
dendritic tree.  

 

Functional implications of anomalous rectification 

The effect of KIR on the sub-threshold response of L2/3 pyramidal neurons is 
two-fold: (1) Rin and (2) τon both increase upon depolarization. The effects on 
dendritic integration of synaptic input might be as follows: 

 Activation of synapses is coupled to a loss of electric membrane 
resistance, thereby making polarization by activation of further synapses more 
difficult. This is a problem of all passive neurons, and is true in particular during 
episodes of high synaptic activity, be it spontaneous or stimulus-evoked. The 
increase of Rin upon depolarization by KIR channels might be a mechanism to 
overcome this problem. EPSPs arriving during UP-states will be rescaled by the 
increased input resistance, leading to a higher depolarization than in a passive 
neuron and thereby raising the cell’s membrane potential across Vthresh more 
easily. Indeed, as was shown by Waters & Helmchen (2006), Rin is higher during 
UP-states (and not only unchanged), which implies that EPSPs arriving during 
these episodes are even bigger than those arriving during DOWN-states. Thus, 
the cell still remains receptive to incoming synaptic activity even during UP-
states. Furthermore, as activation of synapses is costly with respect to the cell’s 
metabolism, AR might also represent an “energy save” function. 

 The time constant τon = R·C increases as R increases (and C stays 
constant). We observed an increase of τon upon depolarization of the cell’s 
membrane, as it occurs during UP-states in vivo. This might lead to a state-
dependent temporal filtering of synaptic input by L2/3 pyramidal neurons: During 
DOWN-states, when τon is small, the cell allows all EPSPs to contribute to the 
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cell’s depolarization. During UP-states, however, fast EPSP-components are 
filtered out. Thereby the impact of proximal EPSPs on the cell response is 
reduced, while distal EPSPs (e.g. from the apical tuft), which already have been 
low-pass filtered by their longer traveling through dendritic cable, will stay 
constant. This also implies differential scaling by Rin-increase of EPSPs during 
UP-states.  

 Finally, KIR channels were shown to counterbalance the depolarizing 
effects of Ih on membrane potential, thereby stabilizing Vrest (Day et al., 2006). 
Clearly, since Ih is almost absent in L2/3 pyramidal neurons, this effect does not 
play a major role in these cells. 

 

 

2.3.3  Hodgkin-Huxley-fit to I-V curves 

From the pharmacology experiments we conclude, that anomalous rectification in 
L2/3 pyramidal neurons is mainly mediated by inwardly rectifying K-channels 
(KIR). This allows a reinterpretation of the observed steady-state V-I curves. 
Instead of fitting V-I relationships phenomenologically with a simple, second-
order Taylor expansion, the inverse function (the I-V curve) can be fitted using a 
conductance-based Hodgkin-Huxley (HH) style model. The cells are treated here 
as being point-neurons. This gross simplification is justified since we do not 
consider transient responses but steady-states. The results of this approach lead 
to an estimate of the total conductance of the respective channel type for the 
electrically visible part of the cell, but provide no information on actual 
conductance densities which are essential for compartmental models of L2/3 
pyramidal cells.  

 

Fitting I-V curves by steady-state channel open probabilities 

Since the contribution of Ih to cAR is not very large, it was omitted and the I-V 
curve was fitted by a combination of nonspecific, non-voltage-dependent leak 
conductance Gleak, and KIR conductance GKIR: 
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Here, the voltage-dependence of the KIR conductance follows a sigmoidal 
relationship with half-activation at V1/2 = -90 mV and slope at half-activation of 
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12.1 mV as shown in Day et al. (2005). According to equation 2.7, the fit uses 
four free parameters, the maximal leak and KIR conductances Gleak and GKIR and 
the respective reversal potentials Eleak and EK. The potassium reversal potential 
was restrained to be more negative than Eleak in all fits. Fig. 2.26 shows an 
example of the procedure: On the left panel (A), one can see that the fit by a 
polynomial (eq. 2.5) is not satisfactory. Inverting the data and fitting the data 
points by eq. 2.7 leads to a much better approximation of the data (red curve).

 
Fig. 2.26  Fitting data with Hodgkin-Huxley (HH) steady state kinetics. A, V-I curve fitted by 
a second order polynomial (eq. 2.5). B, I-V curve fitted with two-conductance HH-model 
(eq. 2.7). Contributions of leak (blue) and KIR (green) currents are displayed separately. 

 

Note that at resting potential, the two currents taken into account (leak, blue, and 
KIR, green) exactly balance each other. 

 

Leak and KIR conductances increase as L2/3 pyramidal neurons mature 

Surprisingly, both leak and KIR conductances derived from such fits in animals of 
different age increased as the cells mature (Fig. 2.27A). Gleak increased from 5 
μS at p8 to 15 ± 4 μS at p45 and GKIR from 3 μS to 51 ± 12 μS. At the same time, 
the leak reversal potential shifted to slightly more negative values, while there 
were no significant changes in potassium reversal potential (Fig. 2.27B). This 
finding is surprising because cAR as a measure for anomalous rectification 
decreases during development while the total conductance of the channel 
responsible for this effect increases. This problem does not occur with input 
resistance, since a higher leak conductance should lead to a lower linear (ohmic) 
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Fig. 2.27  Results of fitting HH steady-state kinetics to I-V curves. A, total conductances in 
dependence on age. B, age-dependence of respective reversal potentials. 

 
Fig. 2.28  Dependencies of passive parameters. A, cAR versus Rin. B, KIR versus leak 
conductance. In both cases, ages are color-coded (bottom of graph).  

 

input resistance. Another puzzling observation is that cAR seems to be linearly 
dependent on input resistance at all ages (Fig. 2.28A). At the same time, GKIR is 
linearly dependent on Gleak at all ages except p8 (Fig. 2.28B), which can be 
explained by changes in surface area given a purely age-dependent specific 
conductance density for both channels. One would expect, though, that a higher 
KIR conductance leads to a higher anomalous rectification. The contrary seems 
to be true, since in Fig. 2.28B the x-axis is practically the inverse of the x-axis in 
Fig. 2.28A. 

 In order to understand this contradiction we tried to predict Rin and cAR as 
a function of Gleak and GKIR. For this purpose we inverted equation 2.7 
numerically using Mathematica (WolframResearch, IL, USA). The result was then 
expanded into a Taylor series. The first and second coefficients should be input 
resistance and anomalous rectification, respectively.  
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 The functions Rin(Gleak,GKIR) and cAR(Gleak,GKIR) (pink surfaces) are shown 
in Fig. 2.29. One can see that the measured data follow the derived functional 
surfaces well, although measured cAR seems to be systematically above the 
surface. This effect might be attributable to a small contribution of Ih or of other 
voltage-dependent channels. 

 

 
Fig. 2.29  Predicted and experimental dependencies of Rin and cAR on Gleak and GKIR. A, Rin 
as a function of Gleak and GKIR. Pink suface, prediction; dots denote measurements. B, cAR 
as a function of Gleak and GKIR. Pink surface, prediction; dots denote measurements. Ages 
are color-coded (see bottom of graph). 

 

BaCl2 shows clear effect on KIR conductance 

In contrast to younger animals, application of 50 μM BaCl2 did not lead to a 
significant reduction of cAR in p28 cells (Fig. 2.23 B), although GKIR was found to 
increase with age. This is probably due to the strong reduction in Rin during 
maturation. In order to examine whether there really is no clear effect on the 
channel responsible for non-linearization of V-I curves in p28 cells, we analyzed 
the pharmacological experiments utilizing equation 2.7. 

The results are shown in Fig. 2.30. GKIR was reduced from 14 ± 1 μS to 1 ± 0 μS 
in p14 cells (p < 0.01, n = 16(5)) and from 63 ± 7 μS to 1 ± 0 μS in p28 cells (p < 
0.01, n = 10(3)). At the same time, Gleak was reduced from 8 ± 1 μS to 5 ± 0 μS in 
p14 cells (p < 0.05, n = 16(5)) and from 16 ± 1 μS to 10 ± 1 μS in p28 cells, 
explaining the increase in Rin by application of BaCl2.  

From the pharmacological experiments and the additional analysis using the HH-
style description of conductances we conclude, that AR is predominantly 
mediated by KIR channels which are blocked by low concentrations of BaCl2.  
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Additional contribution to AR might originate from the hyperpolarization activated 
current, Ih, but experiments with a specific blocker were ambiguous. Persistent 
Na+-channels do not seem to contribute to AR. These findings are consistent for 
the two ages examined. 

 

 
Fig. 1  Effect of 50 μM BaCl2 on Gleak (A) and GKIR (B). Averages are shown in red. 

 

In order to further analyze the data, in particular the transient onset of the voltage 
traces, in a second step we turned to compartmental modeling. This gave us the 
means to finally assess the contribution of Ih as well as to build an age-
dependent model of L2/3 pyramidal neurons which can be easily included in 
simulations of developing cortical networks. 
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In the experimental part of this thesis we examined the basic biophysical 
properties of L2/3 pyramidal cells, their development during the first six postnatal 
weeks, and the mechanisms underlying the sub-threshold rectification. In order to 
further explore the role that these mechanisms may play in synaptic integration, 
we employed numerical simulations of reduced as well as full-morphology 
models. In this chapter the methods and results of numerical simulations are 
presented and their implications for L2/3 pyramidal neurons are discussed. 

 

 

3.1  Modeling Methods 
We first describe the modeling methods and theoretical formulations used in this 
study in detail. In particular, we introduce the search algorithm that was used for 
finding optimal parameter sets for a valid compartmental model of L2/3 pyramidal 
neurons in order to reproduce the experimental data from chapter 2.2. 

 

3.1.1  Voltage-dependent ion channels 

Although Hodgkin and Huxley already hypothesized that the steady-state 
behavior of gating particles, x∞(V), can be described by a Boltzmann distribution, 
they used various arbitrary functions to fit the data (Hodgkin & Huxley, 1952d; 
see chapter 1.3.2). This led to an uncontrollable number of variables per gating 
particle. For gating particles that depend only on voltage this dependence can be 
described in a biophysically more meaningful way by considering parameters of a 
single-barrier kinetic model for each particle (Borg-Graham, 1999). This 
formulation reduces the number of kinetic parameters to five per gating particle. 
Additionally, the parameters are more directly linked to the kinetic behavior of the 
channel. In the following we describe this formula in more detail. 

 The following considerations transform the open and close rates α(V) and 
β(V) of the original Hodgkin & Huxley (HH) formalism (equation 1.9) to new rates 
α’(V) and β’(V): for a given particle x, z (dimensionless) is the effective valence of 
this particle’s voltage sensor. Here, a negative value means that the particle 
tends to open with depolarization, i.e. it is an activation particle, whereas a 
positive value of z denotes an inactivation particle that closes with depolarization. 
Through partial electric shielding by charges of the opposite sign, z does not 
have to be an integer. γ (dimensionless, 0 ≤ γ ≤ 1) is the asymmetry of the gating 
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particle’s voltage sensor position within the membrane. A (in units of ms-1) is the 
leading coefficient of both α’(V) and β’(V), which can be described by Eyring rate 
theory, an explicit version of which might include an additional temperature 
dependence (Johnston & Wu, 1997). For all channels presented, A is taken to be 
constant. V1/2 is the voltage for which α’(V) and β’(V) are equal. With these 
definitions the new rates α’(V) and β’(V) are given by: 
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In accordance to equation 1.9, the steady-state activation x∞(V) can be written as 
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An additional parameter, τ0, is crucial for fitting the expression to the original HH 
mechanism. τ0 can be interpreted as a rate limiting step in the conformational 
change following a voltage step. Intuitively, τ0 is incorporated into equation 3.1:  
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Alternatively, one can write down the rate constants from equation 1.9 as 
functions of α’(V) and β’(V) and τ0:  
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 The effects of A, z, γ, V1/2 and τ0 on x∞(V) and τx(V) are illustrated in Fig. 
3.1: V1/2 sets the voltage of the midpoint and z the steepness of the x∞(V) 
sigmoid. The symmetry parameter γ sets the skew of τx(V): γ = 0.5 means a 
voltage sensor exactly in the middle of the lipid bilayer and thus a perfectly 
symmetric bell-shaped curve for τx(V), which otherwise is bent to one or the other 
side as γ approaches 0 or 1, respectively. Finally, A sets the maximum of τx(V) 
and τ0 its offset. 

  Note that, while z and V1/2 do have effects on τx(V) by setting width and 
the maximum’s position, respectively, the other parameters, A, γ and τ0, do not
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Fig. 3.1  Effect of kinetic parameters on steady-state open probability x∞ (left) and time 
constant τx (right) of a voltage-sensitive ion channel. Solid lines in all graphs were 
generated using following parameters: V1/2 = 0 mV, z = -3, γ = 0.5, A = 0.1 ms-1 and τ0 = 2 
ms. A, changing V1/2 shifts x∞ and τx but leaves their shapes unchanged. B, decreasing z 
“flattens” out the curves while increasing z steepens the curves. C, changing γ skews τx 
but leaves x∞ unaltered. Note that also the maximum time constant increases as γ is 
changed. D, changing A increases or decreases the maximum τx but leaves x∞ unchanged. 
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have an effect on x∞(V). This allows, within certain limits, independent tuning of 
x∞(V) and τx(V). 

 

 

3.1.2  Compartmental modeling 

This study is part of an effort to build a realistic model of L2/3 pyramidal neurons. 
To this end we use numerical simulations in detailed reconstructed morphologies, 
in which a compartmental model is used to represent the complex dendritic tree. 

 

Discretization of the cable equation 

Analytical solutions of the cable equation become rather complicated if the 
diameter of the cable changes with distance or if there are branch points 
connecting multiple cables. In the presence of voltage-dependent ion channels, 
however, solving equation 1.1 analytically becomes practically impossible. In 
these cases it is convenient to solve it numerically. By spatial discretization of the 
cable equation one obtains a family of ordinary differential equations of the form 
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These equations simply represent Kirchhoff’s law of current conservation: The 
membrane currents for compartment j must balance all currents from axially 
adjacent (connected) compartments k. Compartmental models of neurons were 
first used by Rall (1964). 

 

The NEURON Environment 

NEURON is a free software package written by Michael Hines (Hines & 
Carnevale, 1997) that has become a standard tool for simulating compartmental 
models of neurons. The program uses an efficient numbering scheme for the n 
compartments of the neuron´s branched cable structures such as dendritic and 
axonal trees which allows for inverting the connectivity matrix in O(n) steps 
(Hines, 1984). Thus, implicit methods for solving the discretized cable equation 
can be applied in an efficient manner. The default method is the backward Euler 
method, which is stable for large steps and robust in practice. Additionally, the 
HOC (Higher Order Calculator) command set allows programming of routines 
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similar to the language C with numerous intrinsic commands e.g. for manipulation 
of matrices and vectors.  

All mechanisms such as voltage-dependent ion channels and calcium 
diffusion were programmed in NMODL (Hines & Carnevale, 2000), an extension 
to NEURON. In addition to its use for implementation of a variety of ionic 
conductances, NMODL can also be used as a freeware C compiler. 

  
Fig. 3.2  Spatial discretization of the cable equation. A, schematic representation of an 
unbranched section of a dendrite. Morphological reconstruction (see experimental 
methods) provides lists of local coordinates (crosses) and diameters (circles). B, each pair 
of adjacent diameter measurements forms the parallel faces of a truncated cone. C, since 
bends are ignored when forming the one-dimensional cable equation, the reconstructed 
protrusion is straightened out. D, electrical equivalent circuit with two compartments. Ri 
refers to the axial resistance and M to the membrane areas of the compartments. x is a 
relative spatial coordinate with 0 ≤ x ≤ 1. (Figure taken from Hines & Carnevale, 1997) 

 

Besides solving the temporal evolution of the cable equation with constant 
timesteps NEURON also employs a multi-order variable timestep integration 
method called CVODE (Cohen & Hindmarsh, 1996; Hindmarsh et al., 2005) at 
hoc level, which was used for all parameter search experiments in this study.  
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3.1.3  Automated parameter search 

In order to tune a neuronal model such that it reproduces experimental data one 
has to adjust a number of parameters characterizing ionic conductances and 
other biophysical properties such as capacitance and intracellular diffusion. In 
other words, a vector x in an n-dimensional parameter space has to be found 
such that a scalar cost function E(x) is minimized. For a valid model the global 
minimum is to be found. 

Depending on the complexity of the neuronal model at hand, the number 
of parameters quickly skyrockets, as every voltage-dependent channel not only 
adds its conductance and reversal potential to the number of parameters, but 
also its kinetic parameters and spatial distribution. Considering this, it becomes 
clear that tuning the model by hand or simply sampling parameter space ("brute 
force approach"; for examples see Bhalla & Bower, 1993; Prinz et al., 2003) 
cannot be methods of choice (although it still is in most studies): If each one of n 
parameters is sampled k times, the total number of simulations N necessary for 
sampling the whole parameter space increases exponentially as   N = kn. This is 
known as "the curse of dimensionality" (Bellman, 1957). 

Another problem arises from the fact that within the reachable parameter 
space “islands” exist with relatively low errors separated by regimes of high error 
values (e.g. Achard & De Schutter, 2006). This excludes gradient based search 
routines like the downward simplex method (see e. g. Press et al., 1992) because 
these will find the nearest or steepest local minimum and converge there without 
exploring parameter space any further. 

In a recent study, Vanier and Bower (1999) examined the behaviour of 
different search algorithms when applied to a complex neuron model with several 
ionic conductances (leading to a total number of up to 23 parameters). When 
retrieving parameters in their tests two algorithms outperformed gradient based 
methods in respect to quality of the solution and computational time needed: a 
genetic algorithm and a simulated annealing algorithm (Kirkpatrick et al., 1983; 
Kirkpatrick, 1984). As the latter performed slightly better (and as it is inspired by 
physics), we chose to implement a simulated annealing-based search algorithm 
in the NEURON environment. In the following paragraphs the principle ideas 
underlying this search algorithm are described. The NEURON code for the 
simulated annealing algorithm as well as for the error functions used can be 
found in appendix 7.1 together with an example model file. 

 

 

 71



3  Modeling 
 

Simulated annealing – basic principles 

The idea of the simulated annealing (SA) algorithm was first formulated by 
Nicholas Metropolis and colleagues at the Los Alamos laboratories and applied 
to the problem of condensing matter (Metropolis et al., 1953). 

A point x is moved in n-dimensional parameter space with an arbitrary 
random walk method. In contrast to gradient-based methods, where every move 
leading “downhill” and thus reducing the error function E(x) is accepted, the SA 
algorithm will also accept movements "uphill" (i.e., E(x) increases) with a certain 
probability. This probability p is given by a Boltzmann term 
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where ΔE = Ei-Ei-1 is the difference in error function before and after movement of 
x, and kT is the Boltzmann constant times temperature. Although the algorithm 
originally was inspired by thermodynamics and also applied in that field, the term 
kT has to be compared to the "energy" E(x), which is given in units of error 
function (e. g. mV2/ms2). Note that, by convention, if ΔE ≤ 0, p is set to 1. Thus, 
movements downhill are always accepted. 

At the start of the SA algorithm, T is chosen to be very high (see below), 
corresponding to the temperature of a hot fluid, as all movements are accepted 
even if the state x moves into an energetically less favourable regime. As the 
temperature decreases according to a predefined annealing schedule (see 
below), the system moves to lower energy states, ideally settling in a global or at 
least near-optimal minimum as T approaches 0. In real physical systems this 
temperature corresponds to the point of crystallization. Vice versa, if only 
downhill movements are accepted or T = 0 from the very beginning, the material 
is quenched very rapidly and will develop into a glasslike structure representing a 
local minimum of E(x). 

A variant of the Metropolis algorithm was proposed by Glauber (1963), in 
which also downhill movements are also accepted with a probability p ≤ 1: 
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As the temperature approaches zero, the probability for accepting a downhill 
movement p(ΔE ≤ 0) approaches 1 whereas p(ΔE ≥ 0) approaches 0. For all 
parameter searches performed for this thesis the original Metropolis algorithm 
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was used as it performs better when moving close to thermal equilibrium (see 
below). 

 

Movements in parameter space 

One of the major problems in every SA algorithm is the movement of the test 
vector x. Many algorithms have been proposed, the most attractive being that of 
Press and colleagues (first published by Press et al., 1991; Press et al., 1992). 
This algorithm combines the downward simplex algorithm (Nelder & Mead, 1965) 
with the Metropolis algorithm. Instead of moving a single point in parameter 
space a simplex, the simplest body consisting of n+1 linearly independent points 
in n-dimensional space is moved following certain rules as illustrated in Figure 
3.3.  

 

 
Fig. 3.3  Movement of the simplex in two-dimensional space. A, Basic movement. The 
worst vertex is mirrored through the centre of the hyperplane defined by the remaining 
vertices. B, Exploration. If the newly encountered point from A also is the new best, the 
simplex extends into the direction from A by a factor of two. C, One-directional 
contraction. If the newly encountered point from A is also the new worst, it is discarded. 
Instead, the old worst is moved along the direction from A by a factor of one-half. D, 
Complete Contraction. If the algorithm could not get rid of the worst point in C, it will 
contract completely around the best vertex. 

 

In the algorithm used for this study, each of the n+1 vertices, xi, maps onto 
an error value Ei(xi), which itself is one component of an (n+1)-dimensional error 
vector E. At the beginning of each movement cycle (see below), the decision is 
made which point will be moved by subtracting a temperature-dependent term 
from each Ei and comparing the new values Ei’: 
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where T is the temperature and 0 ≤ r ≤ 1 a random number. Note that this 
equation is equivalent to equation 3.6. Since the unit of T corresponds to the unit 
of the error function, k is omitted here. This procedure is the core of the function 
amebsa() (see appendix 7.1.1). After application of equation 3.8, three elements 
are identified: The best (lowest Ei’), the worst (highest Ei’), and the second worst. 
These are used for the whole movement cycle. Note that during the process Ei 
values are not changed. 

Fig. 3.3 shows the possible movements of the simplex. Movements A, B 
and C are implemented in the function amotsa() and are described by 
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with x the centroid (as given by the average of all vertices) of the old simplex, n 
the dimension of parameter space and a the argument for amotsa(). 

The first movement during a movement cycle is the mirroring of the worst 
point through the centre Cn of the hyperplane defined by the remaining n points 
(amotsa(-1), Fig. 3.3A). If the newly encountered point is better than the previous 
best, the simplex will extend along that direction by a factor of 2 (amotsa(2), Fig. 
3.3B) and the movement cycle is terminated as successful. If the newly 
encountered point is better than the second worst, but worse than the best, then 
the point is accepted and the movement cycle is terminated as successful. In the 
third scenario, the new point is worse than the previously worst point. In this 
case, the new point is rejected (unsuccessful move), and amotsa(0.5) is called, 
moving the worst vertex towards the hyperplane (one-directional contraction; Fig. 
3.3C). If the new point is better than the previously worst one, the movement 
cycle is terminated. Otherwise, complete multi-directional contraction around the 
best point takes place (Fig 3.3D), and the movement cycle is terminated. 

 

Cooling schedule 

As mentioned above, if a fluid is cooled down too quickly, it will end up as a glass 
and not a crystal. In analogy, fast reduction of the temperature T in the SA 
algorithm might lead to convergence around a local instead of the global 
minimum. On the other hand, if the algorithm converges too slowly much of the 
computational time is spent in regimes of the parameter space which are unlikely 
to contain the global minimum (or any minimum at all). Thus, it is crucial to find a 
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balance between cooling close to thermal equilibrium and total computational 
time spent on the given problem. 

(Aarts and van Laarhoven, 1985) proposed a cooling schedule that uses 
the fluctuations of the error function encountered during one Metropolis cycle (in 
our program defined as n·(n+1) movement cycles). Here, the new temperature 
Tj+1 is set according to 
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where Tj is the temperature during the last Metropolis cycle, σ the variance of all 
error function values encountered during that cycle and δ an adjustable 
parameter defining the closeness to equilibrium. As a rule of thumb, δ > 1 leads 
to very fast cooling and convergence around a local minimum, while 0 < δ < 1 
produces slow convergences with more extensive sampling of the reachable 
parameter space. In our experiments δ was set to 0.1, which is lower than values 
previously used (δ = 0.3; Das et al., 1990). 

For testing this method we employed a simple exponential cooling 
schedule (Kirkpatrick et al., 1983), whereby the temperature is decreased by a 
certain percentage (usually 3%) every given number of iterations. 

 

Starting temperature 

The starting temperature is an important parameter and has to be chosen 
according to the shape of the error landscape. It can be obtained by specifying 
the initial fraction of movements to be accepted. In our experience it is important, 
though, that the initial acceptance probability is close to one. To this end, Tinit was 
chosen such that the acceptance probability 
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reached 95% (Das et al., 1990). Before starting the algorithm, one full Metropolis 
cycle was run with m = m1+m2 error function evaluations. Here, m1 represents the 
number of successful (ΔE < 0), m2 the number of unsuccessful moves (ΔE ≥ 0) 
and EΔ  the average increase in cost for the m2 unsuccessful moves. The SA 
algorithm was run for one cycle at a temperature that was high enough for 
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acceptance of all simplex movements (for all practical reasons T = 1012 was 
sufficiently high). 

 

Termination criteria 

Two criteria were used to determine convergence of the simplex: One criterion is 
inherent to the program as presented by Press et al. (1992) and describes the 
collapse of the centroid. Termination of parameter search occurred when the 
centroid collapsed below 10-3. 

The other criterion is based on an average gradient of the error function 
with respect to the number of function evaluations. In order to implement this 
while smoothing out fluctuations in the error function, groups of 5n (five times the 
number of parameters) values were averaged. The normalized gradient was 
computed from these averages: 

ε<
−
−

=
−

−

)(
1

1
*

*
1

**

*
iii

ii

i NNE
EE

dN
dE

E
    (3.12) 

with 0 < ε << 1 (here usually chosen as 10-5). Ei
* denotes the mean error values 

averaged over the respective Ni function evaluations during iteration i. Note that 
the Ni´s are not of constant size depending on the shape of the error function. It 
sometimes occurred, however, that the termination criterion equation 3.12 lead to 
premature exit of the algorithm. In these cases, equation 3.12 was not used and 
convergence was defined by the criterion originally proposed by Press et al. 
(1992). 

 

Initialization of the simplex 

The simplex was initiated by first defining a single vertex in parameter space. 
Then, the remaining n points were computed by moving a given maximal 
distance parallel to each coordinate axis in turn. Usually, the simplex was chosen 
such that it engulfed the "educated guess" regime in parameter space which was 
derived for example from previous models of other cells and measured channel 
kinetics. 

 

Dealing with boundaries 

In order to prevent the algorithm from getting lost in regimes of parameter space 
that are physiologically irrelevant or which result in unrealistic kinetics of a certain 
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channel, lower and upper boundaries were introduced. Every time a vertex 
crosses one (of a total of n) such boundary (boundaries), it is set randomly into a 
1 % environment of the previously found best xbest (Cardoso et al., 1996; Weaver 
& Wearne, 2006): 

bestinewibesti xxx ,,, 01.199.0 ≤≤       (3.13) 

This recentering procedure is repeated until a vertex is found that lies within the 
given boundaries. One has to note, though, that the simplex usually is heavily 
distorted by this procedure. In addition, in our experience, if recentering happens 
when xbest itself is close to the border, convergence in a local minimum close to 
that border is likely 

 

Error function 

Crucial for successful tuning a neuron model is an error function that allows an 
objective distinction between "good" and "bad" parameter sets (and all 
intermediates). To this end, several approaches can be found in the literature, 
from simple ones like differences in inter-spike intervals (Vanier & Bower, 1999) 
to more complex ones such as differences in phase-plane trajectory densities (Le 
Masson & Maex, 2001; Achard & De Schutter, 2006) for fast spiking neurons.  

In our study of sub-threshold behaviour of L2/3 pyramidal neurons a 
simple squared-error function was sufficient to describe the main features of sub-
threshold voltage-traces. With this method the sequences of sub-threshold 
voltage traces evoked by current injection were fitted by minimizing the squared 
error between simulated (vsim) and measured (vtarget) trace: 

(∑ −=
injI

ettsim vvE 2
arg )       (3.14) 

Here, the sum runs over all injected current values which elicit sub-threshold 
responses, whereby the entire series of current injections for determining V-I 
relationships were fitted simultaneously. Since the CVODE method (see chapter 
3.1.2) leads to simulated voltage traces with time points that are not equidistant, 
for all error functions the simulated traces were re-sampled by linear interpolation 
to 10 kHz, the same frequency used for our experimental measurements. In 
order not to overrate certain aspects of the measured traces (like the temporal 
development following the onset of a current injection versus steady state) the 
time window over which the traces are compared has to be chosen carefully. 
Another option might be the introduction of an additional penalty function that 
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weighs the onset phase stronger than the steady state, e.g. multiplication by a 
decaying exponential function. 

 

3.1.4  Simulating UP/DOWN-states 

One important application of the subthreshold L2/3 pyramidal cell model is to 
reproduce spontaneous neuronal activity in the form of UP- and DOWN-states as 
typically seen in in vivo experiments, representing different levels of synaptic 
activity. In a recent publication, UP-states were reproduced for L2/3 pyramidal 
neurons in 4-weeks old rats using a simple phenomenological description of 
anomalous rectification (Waters & Helmchen, 2006; equation 2.5). Here, we 
aimed at a more realistic simulation of UP-states using a conductance-based 
model. The goal was to assess the impact of changes in KIR and leak 
conductances during postnatal development on these spontaneous 
depolarizations.  

 

Double exponential synapses 

A varying number of synapses were inserted in single- as well as in multi-
compartment models of L2/3 pyramidal cells. Synapses were modelled as locally 
changing membrane conductance gsyn with a double exponential time course: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−−
12)( ττ
tt

syn eekWtg       (3.15) 

W is the synapse’s weight factor; k is a factor normalizing the peak of the 
summed exponential functions to 1; τ1 and τ2 are the time constants for the rising 
and the decaying phase of the PSP, respectively, and were taken to be τ1 = 0.2 
ms and τ2 = 1.7 ms for excitatory (Hausser & Roth, 1997) and τ1 = 1 and τ2 = 10 
ms for inhibitory synapses (Ali et al., 2001). The postsynaptic current at each 
synapse is given by 

)()()( synsynsyn EVtgtI −=       (3.16) 

where Esyn is the reversal potential of the synapse. Esyn was set to 0 mV for 
excitatory and -75 mV for inhibitory synapses. This synapse mechanism is 
implemented in NEURON by the Syn2Exp() command. 

 Synapses were connected using a NetCon() command to a single pre-
synaptic compartment stimulated by NetStim() with fixed mean rate but 
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completely random timing (Stim.noise = 1). Number of synapses was fixed to 
10000 excitatory and 2000 inhibitory synapses (DeFelipe & Farinas, 1992).  

 

 

Protocols for UP/DOWN-states 

UP-states were modelled as 500 ms long periods of enhanced synaptic input and 
were preceded by 50 ms equilibration time and followed by 300 ms baseline, 
each without synaptic input. During the UP-state and baseline, 100 ms-long 
hyperpolarizing current pulses with an amplitude of -300 pA were injected into the 
soma in order to measure Rin during UP- and DOWN-states, respectively, and 
compare these values to those previously found (Waters & Helmchen, 2006). 
UP-states were modeled for animals of all ages while the number and properties 
of synapses were kept constant and only the mean activation frequency was 
changed. Using this approach we wanted to determine how developmental 
changes in sub-threshold properties might influence neuronal responses to 
synaptic input. 

 

 

3.2  Modeling Results 
Over the last few years, immense computer power has become available for 
neuroscience. As a consequence, increasing effort is put into building numerical 
models for single cells and small networks in order to deepen our understanding 
of the mechanisms underlying experimental observations.  

Crucial for building a valid model is the knowledge of the best parameter 
set that reproduces experimental results. Unfortunately, most models are tuned 
“by hand”, often lacking objective evaluation of quality in respect to experimental 
data. Moreover, tuning a model is a daunting task, thus scientists are bound to 
accept the first reasonable parameter set (reproducing some effects), which 
however most likely is far away from a global minimum that would best reproduce 
all effects observed.  

 Here, we employed and evaluated an automatic parameter search method 
called simulated annealing (SA) algorithm, which allows searching high-
dimensional parameter spaces for a near-optimal solution of an objective error 
function (Kirkpatrick et al., 1983; Press et al., 1991; Vanier & Bower, 1999; 
Weaver & Wearne, 2006). 

 79



3  Modeling 
 

3.2.1  Testing the SA algorithm with artificial data 

One of the major problems for any parameter estimation is the fact that 
experimental data are never noise-free. This might lead to a different global 
minimum of the error function as compared to that of an ideal, noise-free 
measurement. In the following, we tried to estimate the error in parameters made 
by applying the simulated annealing algorithm to artificially generated, noisy data. 

 

Generation of artificial data for a retrieval test 

Artificial data were generated in two steps. First, voltage traces were simulated 
using a single compartment model (L=90 μm, diameter = 100 μm) with the 
following parameters: (1) passive properties: specific membrane resistance Rm = 
18 kΩ/cm2, specific membrane capacitance Cm = 1.2 μF/cm2, passive reversal 
potential Epas = -57 mV; (2) Ih: specific conductance gIh = 1e-5 S/cm2, reversal 
potential EIh = -20 mV, fixed kinetic parameters (equation 3.1) A = 0.01 ms-1, γ = 

 

 
Fig. 3.4  Artificial data with different levels of noise for testing the SA algorithm. A,initial 
noise amplitude 0.1 mV; B, 0.2 mV; C, 0.5 mV; D, 1 mV. Red traces depict original 
simulated data without noise. X-axis is totally simulated time. 
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0.6, q = 4.2 elementary charges e, V1/2 = -90 mV; (3) instantaneous KIR: specific 
conductance gKIR = 2.3e-4 S/cm2, potassium reversal potential EK = -94 mV, 
kinetic parameters (kept fixed) Vh = -90 mV, Vc = 12.1 mV (Day et al., 2006). 

The resulting traces were smooth curves which were directly taken for “no 
noise” retrieval test. Curves were generated using the CVODE method and 
sampled with 10 kHz. Noise in electrophysiological experiments was assumed to 
be of 1/f character (Dutta & Horn, 1981; Benndorf, 1995). Thus, a series of 
sinusoidal functions was added to the simulated data in Igor Pro 4.0 
(Wavemetrics, OR, USA). Frequency, f, of functions ran from 1 Hz to 5 kHz in 1 
Hz steps; amplitudes scaled with 1/f; phase shift within an interval [-π, +π] was 
random for each function separately. In order to prevent that noisy data with 
different maximal noise amplitudes are merely scaled versions of one another, 
five different curves were generated with different seeds for the random number 
generator at each initial amplitude. Four different initial amplitudes at f = 1 Hz 
were used: 0.1 mV, 0.2 mV, 0.5 mV and 1 mV. Additionally, Gaussian offset 
noise with fixed standard deviation of 0.002 mV was added. Fig. 3.4 shows all 
artificial data used for testing. 

 

Testing the SA algorithm on artificial subthreshold data 

To test the SA algorithm, several starting temperatures and annealing schedules 
were examined. First, the SA algorithm was used as a downward simplex 
algorithm, i.e. starting temperature was set to zero. In a second run a starting 
temperature of 1000 (which was approximately 10% of the maximal differences 
in the vertices’ starting errors) and an exponential decay as annealing schedule 
were used. Finally, the complete set of mechanics was used including automated 
choice of starting temperature (equation 3.11), cooling dependent on variance in 
encountered errors (equation 3.10) and termination criteria based on the size of 
the simplex in error landscape and averaged development of error values 
encountered (equation 3.12). The latter mode is referred to as fully automated (f. 
a.) mode Example runs are shown in Fig. 3.5, applied to artificial data without 
noise. Note the different timescales (“simulation run”) on which the algorithms 
converged. It can clearly be seen that a higher temperature leads to a more 
erratic movement of the simplex, mirrored in the fluctuations of the example 
parameter. In addition, the higher the temperature, the more different “currently 
best”-values are encountered, as can be seen from the fluctuations in the red 
dots in Fig. 3.5C, right panel. 
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Fig. 3.6 shows the complete results of the initial test of the SA algorithm. 
As expected, the downward simplex algorithm (T = 0) took only few error function 
evaluations to converge, because only better error function values are accepted 
for movement (Fig. 3.6B). Somewhat surprising was that the final Ih parameter 
values were much closer to the target values with T = 0 than with T = 1000 or the 
f.a. algorithm, although the latter showed the least deviation from the other target 
parameters (Fig. 3.6A). Evaluating the lowest encountered error values Ebest 
showed that for all algorithms tested often a solution was found that was better 

 

 
Fig. 3.5  Examples for test runs with different annealing schedules. Left panels depict 
errors (grey), temperature (red solid line) and encountered new best (red dots). Right 
panels show specific membrane resistance values (grey) as an example parameter (out of 
seven) with the respective current best (red dots); broken black line is the target value. A, 
T = 0. B, T = 1000, exponential decay. C, fully automated. 
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Fig. 3.6  Results of SA algorithm test under three different conditions: downward simplex 
(T = 0), exponential decay (T = 1000) and fully automated (f. a.). A, deviations in single 
parameters for the three different conditions after the algorithm terminated. B, number of 
error function evaluations before convergence occurred. C, error after convergence, 
divided by the theoretical best error if the correct set of parameters had been retrieved. 
Colors indicate the amount of noise added (see bottom). 

 

than the target parameter set. To show this, Ebest was divided by the absolute 
point-wise difference between original data and noisy data (Fig 3.6C). Most likely 
the algorithm also optimized the parameter set with respect to the low-frequency 
components of the added noise. This might also be reflected in the huge 
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variance in Ih conductance and reversal potential, which are the parameters least 
constrained due to the initially low value of gIh. 

In order to test the fully automated SA algorithm for later applications with 
a larger set of free kinetic parameters, optimization of parameters was tested in a 
14-dimensional parameter space (Fig. 3.7). While gIh was systematically over- 
and gKIR underestimated, kinetic parameters were retrieved well with little 
variance. Additionally, the number of error function evaluations needed for 
convergence was only around 1.5 times higher than with the 7-dimensional 
parameter space.  

 

 
Fig. 3.7  Results of testing the fully automated SA algorithm on a 14-dimensional 
parameter space, now including kinetic parameters (eq. 3.1). A, deviations in single 
parameters (grey bars for better separation of parameters). B, number of error function 
evaluations before convergence occurred. C, error after convergence, divided by the 
theoretical best error. Colors indicate the amount of noise added (see bottom). 

 

In conclusion, we decided to use the fully automated (f. a.) SA-algorithm because 
it performed best compared to the alternative modes with respect to minimal 
error and computational time needed to find a near-optimal parameter set.  

 

 

3.2.2  Simulation of experimental data 

Single compartment model reveals a low density of Ih in L2/3 pyramidal neurons 

In order to estimate the age-dependency of total Ih-conductance GIh in 
comparison to total KIR conductance GKIR, a single isopotential compartment 
(arbitrary length of 50 μm and diameter 50 μm) was equipped with passive 
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properties, as well as the ion channels KIR and Ih, leading to a total of 14 free 
parameters (see above). It was necessary to declare kinetic parameters as free 
parameters because the time course of sag was in most cases not reproducible 
with the kinetics taken from the literature (Magee, 1998; Traub et al., 2003; Day 
et al., 2006). Instead of fitting 400 ms per current level as in the tests, only the 
initial 200 ms of the voltage response were fitted for each current level. This 
ensured a larger relative weight of the transient behavior for the error function 
values. In total, 13 cells at p8, 17 cells at p14, 11 cells at p21, 10 cells at p28 and 
6 cells at p45 were tested. Conductances and currents are given per area. 
Nevertheless, since membrane area is the same arbitrary value for all cells 
simulated, the development of conductances is directly comparable to that given 
in chapter 2.3.3 (Fig. 2.27).  

 Fig. 3.8 shows the results of the age-dependent single compartment 
model. As expected, the estimated Ih conductance was lower than the KIR 
conductance: at p8, both conductances were of the same order of magnitude (Ih: 
6 ± 2 μS/cm2; KIR: 24 ± 6 μS/cm2, p < 0.01) whereas at p45, where steady state 
was reached, there was a large difference between the two conductances (Ih: 29 
± 7 μS/cm2; KIR: 768 ± 315 μS/cm2, p < 0.05). Leak conductance increased from 
67 ± 7 μS/cm2 at p8 to 180 ± 40 μS/cm2 at p45 (p < 0.001). Reversal potentials 
remained fairly constant (Fig. 3.8B), showing only a slight decrease in leak (p < 
0.05) and K+ reversal potentials (p > 0.05). Furthermore, the reversal potentials 
for leak and K+ were similar (p > 0.05), suggesting a major contribution of K+ 
channels to leak conductance. 

 

 
Fig. 3.8  Conductance densities and reversal potentials from single compartment fit. A, 
conductance densities versus age of simulated cells. B, corresponding reversal potentials 
versus age. Channel and ion types, respectively, are color-coded. 
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Fig. 3.9  Changes in membrane capacitance and effect on conductances. A, age-
dependence of specific membrane capacitance Cm. B, conductance values normalized to 
Cm = 1 μF/cm2. Channel types are color-coded. 

 

 In order to test the extent to which the observed changes in conductances 
are due to developmental changes in morphology, all conductances were 
normalized to a specific membrane capacitance of 1 μF/cm2. Thereby, effects of 
an increase in electrically “visible” membrane area are cancelled. Specific 
membrane capacitance Cm roughly doubled from 1.4 ± 0.1 μF/cm2 at p8 to 3.1 ± 
0.6 μF/cm2 at p45 (p < 0.001; Fig. 3.9A), indicating an increase in efficient 
membrane surface during development. After normalization to Cm (Fig. 3.9B) the 
pronounced increase in specific KIR conductance still prevails, but the increase 
in leak conductance is much less pronounced from 47 ± 4 μS/cm2 at p8 to 64 ± 
12 μS/cm2 at p45 (p = 0.1; Fig. 3.9B, black trace), suggesting that the mature 
density of leak channels is established already at an early stage of development 
and that any increase in absolute leak conductance is due to an increase in cell 
surface area. 

 

 
Fig. 3.10  Simulated leak currents from different ages. Individual experiments in light grey, 
curves from mean values in red; y-axis intercepts at experimentally determined Vrest.  
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Because not only conductances but also kinetic parameters and reversal 
potentials were free parameters in these simulations it is particularly interesting 
to see how the I-V relationships evolve as the cells mature. In Fig. 3.10, the fitted 
leak currents are shown. The slope of the mean I-V curve (red) increases with 
age, leading to the experimentally observed decrease in Rin. Note that also the 
mean leak reversal potential is at all ages close to the experimentally determined 
mean resting potential (intercept of x- and y-axis). Due to its small conductance 
in L2/3 pyramidal neurons the Ih current does not play a significant role in 
steady-state behavior but gives rise to the small sag observed in these cells. Fig. 
3.11 depicts the development of Ih current in these cells during maturation. 
Around resting potential (intercept of x- and y-axis) there is practically no Ih 
current present due to a rather steep activation curve centered around more 
hyperpolarized half-activation V1/2. Little change in mean steady state activation 

 

 
Fig. 3.11  Ih currents and kinetics at different ages. Upper row, current contribution from 
Ih. Middle row, steady state activation curve. Lower row, activation time constants. 
Individual experiments in light grey, curves from mean values in red; y-axis intercepts at 
experimentally determined Vrest.  
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Fig. 3.12  KIR currents and kinetics at different ages. Upper row, current contribution from 
KIR. Lower row, steady-state activation. Individual experiments in light grey, curves from 
mean values in red; y-axis intercepts at experimentally determined Vrest. 
 
 p8 p14 p21 p28 p45 

gleak / μS/cm2 67 ± 7 74 ± 4 123 ± 16 151 ± 12 180 ± 40 

Eleak / mV -62 ± 1 -73 ± 2 -76 ± 1 -76 ± 2 -76 ± 4 

Cm / μF/cm2 1.4 ± 0.1 2.0 ± 0.1 2.4 ± 0.2 3.0 ± 0.2 3.1 ± 0.6 

gIh / μS/cm2 6 ± 1 15 ± 2 27 ± 4 56 ± 19 29 ± 7 

EIh / mV -21 ± 3 -17 ± 3 -13 ± 5 -14 ± 5 -16 ± 5 

AIh / 1/μs 7 ± 1 8 ± 1 9 ± 1 10 ± 1 11 ± 1 

γIh 0.65 ± 0.04 0.7 ± 0.03 0.48 ± 0.04 0.57 ± 0.05 0.51 ± 0.04 

qIh / e 4.6 ± 0.1 4.9 4.9 ± 0.1 4.8 ± 0.1 4.9 ± 0.1 

V1/2,Ih / mV -93 ± 2 -99 ± 1 -98 ± 1 -99 ± 1 -97 ± 2 

τ0.Ih / ms 1.1 ± 0.2 1.2 ± 0.1 1.5 ± 0.3 0.8 ± 0.3 0.6 ± 0.2 

gKIR / μS/cm2 24 ± 6 160 ± 15 337 ± 63 724 ± 98 769 ± 315 

EK / mV -77 ± 8 -80 ± 2 -83 ± 1 -84 ± 2 -83 ± 4 

Vh,KIR / mV -96 ± 3 -101 ± 1 -95 ± 3 -95 ± 2 -96 ± 3 

Vc,KIR / mV 11.0 ± 0.7 11.8 ± 0.4 12.1 ± 0.6 13.0 ± 0.5 11.8 ± 1 

Table 2  Parameters from multi-parameter fitting in a single compartment model. 
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was observed over the different ages. Also, the time constant τ was stable, 
although a systematic shift towards an on average faster activation was 
observed. All kinetic parameters are given in table 3.1. In comparison to Ih, the 
currents mediated by KIR channels are significantly larger (Fig. 3.12). In addition, 
due to a shallower steady-state activation curve more KIR channels are active 
around resting membrane potential of the cell (experimentally determined mean 
value as intercept of x- and y-axis). Since the potassium reversal potential lies 
below the leak reversal potential, also the KIR current reverses below resting 
potential. Over the ages, this current increases significantly, as was already 
obvious from the conductances alone, thus becoming more important with age 
for contributing to the steady state currents. 

 

The age-dependent single-compartment model 

Using the mean parameters given in Table 3.1, an age-dependent single 
compartment model was built. This model reproduces the sub-threshold voltage 
response of L2/3 pyramidal cells of different ages (Fig. 3.13; compare Fig. 2.9). 
Diameter and length were set to 50 μm (the same value as during actual 
parameter search; see above) to allow usage of the conductance densities found 
during multi-parameter fitting. Injected currents ranged from -500 pA to +500 pA 
(raising some of the cells well above AP threshold) in steps of 50 pA. 

 While in younger cells relatively low current injections (between 150 pA 
and 200 pA at p8) are sufficient to reach AP threshold, in the majority of matured 
cells even a current injection of 500 pA does not depolarize the cells sufficiently

 

 
Fig. 3.13  Resulting V-I curves from averaged single compartment models. Current 
injections ranged from -500 pA to +500 pA in steps of 50 pA. Black dashed line represents 
0 mV, red dashed lines the measured AP threshold for the respective age. 
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to reach AP threshold. Of course, this result is based on the assumption that 
leak, Ih and KIR are the only ionic conductances present in these cells. 

 

Simulated pharmacology 

In order to test whether the simulated channels do have the effect on anomalous 
rectification as observed in our experiments, additional simulations with complete 
blocking of Ih and KIR, respectively, were performed. The respective 
conductance densities were set to 0 S/cm2. 

 Fig. 3.14 shows the results of these simulated pharmacological 
experiments for two ages, p14 and p28. At p14, application of 50 μM BaCl2 
almost linearized the voltage response, while blocking of Ih showed little effect 
(compare Figs. 2.19 and 2.22). In p28 cells, though, 50 μM BaCl2 failed to 

 

 
Fig. 3.14  Simulated pharmacological block of KIR and Ih for two ages, p14 (upper row) and 
p28 (lower row). Current injection ranged from -500 pA to +500 pA in steps of 50 pA. 
Control traces are the same as in Fig. 3.13. For 50 μM BaCl2, gKIR was set to zero, for 50 μM 
ZD7288, gIh was set to zero. The last column represents the purely passive model with no 
active conductances (gKIR, gIh = 0). Black broken lines are 0 mV, red broken lines show 
experimentally determined AP threshold.  
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completely remove AR due to stronger presence of Ih, which elicits a more 
prominent sag when KIR is blocked due to stronger activation during 
hyperpolarization. However, blocking of Ih alone shows little effect on AR, 
suggesting that the overall effect of Ih is small. 

 

 

3.2.3 Full-morphology models 

In order to get a more realistic estimate of channel densities in L2/3 pyramidal 
neurons, the SA algorithm was employed to find parameter sets for reconstructed 
morphologies.  

 

Full-morphology models with constant conductance densities 

In a first set of simulations we tried to estimate more realistic values for 
membrane properties based on our experiments. Since we did not measure 
several locations in the dendrite tree at the same time during our experiments, 
we lack the knowledge of how channel densities might change with distance from 
soma. Thus, we decided to reproduce our experimental findings in a first 
approximation with homogenous channel distributions in reconstructed 
morphologies, with the hope that more distal parts are electrically uncoupled from 
the proximal parts and do not substantially influence the response obtained at the 
soma.For all simulations presented in this paragraph, axial resistance Rax was 
set to 120 Ω·cm to prevent over-fitting. Channel kinetics were variable with the 
same free parameters and within the same boundaries as for the single 
compartment model (see above).  

 Results are presented in Table 3.2. The same trends as in the single 
compartment models are obvious for the passive parameters: gleak increases, 
while Eleak shifts to more hyperpolarized values. Cm again increases with age, an 
effect that might have several reasons: (1) we did not correct morphologies for 
shrinkage, which might lead to under-estimation of dendritic diameters; (2) 
spines, which add to the membrane surface while leaving the diameter unaltered, 
were not included in the morphology; (3) Rax was chosen too high, thereby 
electrically “hiding” distal parts of the dendritic tree and requiring higher values in 
order to reproduce the transients observed. Ih conductance densities are in good 
agreement with those obtained in the single compartment models. Except 
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 p8 p14 p21 p28 p45 

gleak / μS/cm2
94 ± 12 

(67 ± 7) 

60 ± 4 

(74 ± 4)* 

116 ± 11 

(123 ± 16) 

144 ± 17 

(151 ± 12) 

141 ± 20 

(180 ± 40) 

Eleak / mV 
-57 ± 1 

(-62 ± 1)* 

-73 ± 2 

(-73 ± 2) 

-73 ± 1 

(-76 ± 1)* 

-64 ± 2 

(-76 ± 2)** 

-73 ± 3 

(-76 ± 4) 

Cm / μF/cm2
2.9 ± 0.4 

(1.4 ± 0.1)** 

1.9 ± 0.1 

(2.0 ± 0.1) 

2.7 ± 0.2 

(2.4 ± 0.2) 

2.4 ± 0.3 

(3.0 ± 0.2) 

3.6 ± 0.7 

(3.1 ± 0.6) 

gIh / μS/cm2
15 ± 5 

(6 ± 1)** 

11 ± 2 

(15 ± 2) 

23 ± 3 

(27 ± 4) 

16 ± 8 

(56 ± 19) 

134 ± 62 

(29 ± 7) 

EIh / mV 
-36 ± 0 

(-21 ± 3)* 

-28 ± 5 

(-17 ± 3) 

-27 ± 7 

(-13 ± 5) 

-41 ± 9 

(-14 ± 5)* 

-37 ± 11 

(-16 ± 5) 

AIh / μs-1
7 ± 1 

(7 ± 1) 

7 ± 1 

(8 ± 1) 

8 ± 1 

(9 ± 1) 

7 ± 2 

(10 ± 1) 

10 ± 1 

(11 ± 1) 

γIh

0.55 ± 0.12 

(0.65 ± 0.04) 

0.61 ± 0.04 

(0.7 ± 0.03) 

0.61 ± 0.04 

(0.48 ± 0.04)* 

0.54 ± 0.06 

(0.57 ± 0.05) 

0.61 ± 0.05 

(0.51 ± 0.04) 

qIh / e 
4.6 ± 0.2 

(4.6 ± 0.1) 

4.7 ± 0.1 

(4.9) 

4.4 ± 0.1 

(4.9 ± 0.1)** 

4.4 ± 0.2 

(4.8 ± 0.1) 

4.7 ± 0.1 

(4.9 ± 0.1) 

V1/2,Ih / mV 
-91 ± 5 

(-93 ± 2) 

-98 ± 2 

(-99 ± 1) 

-90 ± 2 

(-98 ± 1)** 

-99 ± 3 

(-99 ± 1) 

-97 ± 4 

(-97 ± 2) 

τ0.Ih / ms 
1.2 ± 0.1 

(1.1 ± 0.2) 

1.3 ± 0.2 

(1.2 ± 0.1) 

2.0 ± 0.7 

(1.5 ± 0.3) 

0.7 ± 0.2 

(0.8 ± 0.3) 

0.9 ± 0.2 

(0.6 ± 0.2) 

gKIR / μS/cm2
114 ± 40 

(24 ± 6)** 

184 ± 15 

(160 ± 15) 

545 ± 94 

(337 ± 63) 

997 ± 215 

(724 ± 98) 

1686 ± 545 

(769 ± 315) 

EK / mV 
-95 ± 3 

(-77 ± 8) 

-92 ± 1 

(-80 ± 2)** 

-90 ± 1 

(-83 ± 1)** 

-91 ± 3 

(-84 ± 2) 

-87 ± 1 

(-83 ± 4) 

Vh,KIR / mV 
-99 ± 3 

(-96 ± 3) 

-101 ± 2 

(-101 ± 1) 

-95 ± 2 

(-95 ± 3) 

-94 ± 4 

(-95 ± 2) 

-97 ± 3 

(-96 ± 3) 

Vc,KIR / mV 
13.0 ± 0.6 

(11.0 ± 0.7) 

11.3 ± 0.6 

(11.8 ± 0.4) 

9.9 ± 0.5 

(12.1 ± 0.6) 

11.4 ± 0.8 

(13.0 ± 0.5) 

11.0 ± 0.8 

(11.8 ± 1) 

Table 3.2  Parameters from multi-parameter fitting in full morphologies. Values in brackets 
are from single-compartment fits (Table 3.1); * = significant (p < 0.05), ** = highly 
significant (p < 0.01).  
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at p8, where conductances are very small, none of these deviations is significant. 
Also the kinetic properties are overall unchanged, although a systematic, though 
not significant shift of Erev,Ih towards more hyperpolarized values was observed. 
KIR conductance densities and kinetic parameters were found to resemble those 
found in single compartment models. Although a systematic trend towards higher 
conductance densities was found, these differences were not significant. 

 As was stated above, a model that does not take into account the voltage 
responses in the dendrites is of limited value. Thus, in a second model, data from 
dual recordings were combined with detailed morphological reconstruction to 
build a detailed full-morphology model with heterogeneous ion channel 
distributions, using the same parameter search approach. 

 

Refining full-morphology models with dendritic voltage measurements 

In cells with extensive dendritic branching, voltage control of more distal regimes 
of the dendritic tree is difficult (e.g. Schaefer et al., 2003). Thus, for building a 
more realistic model with conductance distributions that depend on distance from 
the soma, the voltage response to somatic current injection is to be measured at 
dendritic sites. Data of dual recordings from L2/3 pyramidal neurons have kindly 
been provided by Matthew E. Larkum, along with the corresponding 
reconstructed morphologies. Unfortunately, only one cell turned out to be usable 
due to large voltage shifts in the dendritic recording electrode visible in the 
recordings. 

 Four additional parameters were introduced compared to the single-
compartment model and the full-morphology model with constant conductance 
densities: (1) axial resistance Rax, which governs the spread of voltage signal 
along the dendritic cable; (2) exponential distribution of Ih channels (analogous to 
observations in L5 pyramidal cells, with larger Ih conductance in the distal parts 
of the apical tree (Kole et al., 2006)) required a positive length constant λIh, 
describing the local conductance density relative to Ih conductance at soma; (3) 
spatial distribution of KIR and leak channels was described by exponential 
functions, leading to two additional length constants λKIR and λleak as free 
parameters. Length constants were allowed to assume positive as well as 
negative values, leading to an increase or decrease, respectively, in channel 
density along the dendrite away from the soma. The error function was changed 
by adding up the errors in the somatic and dendritic voltage traces: 

( ) ( )( )∑ −+−=
injI

ettdendsimdendettsomasimsoma vvvvE 2
arg,,

2
arg,,   (3.17) 
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 Fig. 3.15 shows the reconstructed cell (age p28), positions of the two 
recording micropipettes, and the original data measured at the two sites 
(dendritic electrode 184 μm away from soma). Since the dendritic recording is 
noisier than the somatic one, fitted conductance of Ih at the dendritic site is less 
reliable than at the soma. At both sites, anomalous rectification is present in the 
voltage response upon somatic current injection. 

 

 
Fig. 3.15  Morphology and electrophysiological data used for constraining full-morphology 
L2/3 pyramidal cell model with non-constant channel distributions. A, reconstructed 
morphology from in vitro experiment. The two recording sites are indicated, voltage traces 
in B in respective colors. B, respective voltage response upon somatic current injection. 
Left, experimental traces; right, simulated traces after convergence of SA algorithm. 
Current injections through the somatic electrode ranged from -300 to +300 pA in steps of 
100 pA. (Data kindly provided by Matthew E. Larkum.) 

 

 In the resulting best parameter set, kinetic parameters were very similar to 
those found in the single compartment model: AIh = 10 us-1, γIh = 0.6, qIh = 4.7 e, 
V1/2,Ih = -98 mV, τ0,Ih = 1.4 ms, Vh,KIR = -87.7 mV, Vc,KIR = 11.3 mV. Somatic leak 
conductance was 111 μS/cm2 (Eleak = -69.1 mV), with a very high length constant 
along the dendrite (λleak = 138.5 mm) compared to the dimensions of the cell. 
This suggests that passive membrane properties are the same at every site in 
the dendritic tree. Specific membrane capacitance was Cm = 1.8 μF/cm2. Axial 
resistance was found to be Rax = 191 Ωcm. KIR conductance was 578 μS/cm2 at 
the soma and decreased with a length constant of λKIR = 117 μm along the 
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dendrites. At the same time, Ih conductance density increased from 10 μS/cm2 at 
the soma with a length constant of λIh = 207 μm. 

 As a control simulation, we tried to reproduce experimental data from the 
same cell where current injection occurred through the dendritic micropipette and 
the response was simultaneously measured at the soma. The parameters were 
fixed to the values obtained from fitting the traces with somatic current injection. 
Experimental and simulated traces are in close agreement (Fig. 3.16). A slight 
difference was that Rin,dendrite was larger in simulations than in experiments. Still, 
somatic voltage response upon dendritic current injection is reproduced correctly. 
This indicates that the set of parameters found is useful for simulation of more 
complex voltage patterns such as stochastic activation of synapses in the 
dendritic tree (see below). 

 

 
Fig. 3.16  Simulation with dendritic current injection. Same cell and parameters as in Fig. 
3.15. A, reconstructed morphology. Current injections were applied to the dendrite 184 μm 
from soma. Voltage traces in B in respective colors. B, respective voltage response upon 
somatic current injection. Left, experimental traces; right, simulated traces after 
convergence of SA algorithm. Current injections through the dendritic electrode ranged 
from -200 to +500 pA in steps of 100 pA. (Data kindly provided by Matthew E. Larkum.) 
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3.2.4  Simulation of in vivo UP- and DOWN states 

In the recent study of Waters & Helmchen (2006), compartmental models with a 
phenomenological mechanism for reproducing anomalous rectification were used 
for assessing the influence of non-linear V-I relationships on synaptic integration. 
Here, we wanted to test how our mechanistic conductance-based, age-
dependent model behaves during episodes of stochastic synaptic input 
resembling spontaneous in vivo activity (UP-states). 

 

Age-dependent single-compartment models 

For determining the age-dependency of changes in number or activation 
frequency of synapses, the single-compartment model presented in chapter 3.2.2 
was used. Properties of single synapses and simulation protocols are described 
in 3.1.4. Simulations were done with fixed timesteps every 25 μs. In a first step, 
UP- and DOWN-states were reproduced for p45 animals according to 
measurements from adult rats. To this end, 10000 excitatory and 2050 inhibitory 
synapses (De Felipe & Farinas, 1992; Waters & Helmchen, 2006) converged 
onto a single compartment. Active properties were inserted following Table 3.1, 
last column (p45) in order to build an adult cell. Five runs with different seeds for 
the random number generator setting PSP events were done. Steady state 
voltage deflections from Vrest and UP-state were determined by averaging of the 
last 50 ms of the averaged voltage response upon current injection of -300 pA.  

 Fig. 3.17 shows single runs and the average trace. Mean activation rates 
of 0.18 Hz for excitatory and 0.03 Hz for inhibitory synapses were sufficient to 
elicit a depolarization of 14 mV (-78.1 mV at rest to -64.1 mV), while in 
accordance to experimental findings in vivo, Rin increased during UP-states. 
While current injection of -300 pA without synaptic input lead to a 
hyperpolarization of -9.5 mV(Rin = 31.7 MΩ), injecting the same current during 
the UP-state lead to a mean hyperpolarization of -14.9 mV (Rin = 49.7 MΩ). 

 

 
Fig. 3.17  Simulated UP/DOWN states in a L2/3 single compartment model for age p45. Two 
current injections of -300 pA for 100 ms occurred during and after the UP-state. Grey 
traces show single runs, red trace shows the average.  
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 In a subsequent step, the numerical experiment was repeated with the 
averaged single compartment models of younger cells presented above. The 
same number of synapses and firing rates were used. It is important to note that 
these activation patterns are purely hypothetical as UP- and DOWN-states have 
not been examined systematically in younger rats. Also, a constant number of 
synapses with the same synaptic strength almost certainly do not represent the 
conditions during postnatal development. Nevertheless, it is instructive to see 
how immature cells would respond to such synaptic activation. Results are 
shown in Fig. 3.18. The voltage deflections and respective values for Rin are 
listed in Table 3.3: 

 Our age-dependent single-compartment model of L2/3 pyramidal cells 
shows, that the amplitude of UP-states elicited by the same number and mean 
activation frequency of synapses as in p45 animals decreases as L2/3 pyramidal 

 

 
Fig. 3.18  Simulated UP/DOWN states in a L2/3 single compartment model for different 
ages. Traces are shifted to the same arbitrary Vrest to allow a better comparison between 
ages. Two current injections of -300 pA for 100 ms occurred during and after the UP-state. 
Grey traces show single runs, red trace shows the average. 

 97



3  Modeling 
 

 p8 p14 p21 p28 p45 

Vrest / mV -62.2 -74 -78.3 -80.2 -78.1 

VUP / mV -38.9 -47.1 -58.5 -65.5 -64.1 

ΔV / mV 23.3 26.9 19.8 14.7 14 

Rin,rest / MΩ 146 85.3 47 29.7 31.7 

Rin,UP / MΩ 109.7 101.3 70 51 49.7 

Rin,UP/Rin,rest 0.75 1.19 1.49 1.72 1.57 

Table 3.3  Results of simulations of UP/DOWN states in single compartment model cells at 
different ages. 

 

cells mature. This is due to the decrease in input resistance. The only exception 
is in young cells at age p8, where the amplitude is smaller than at p14. This 
might be attributable to a decrease in Rin for EPSCs that arrive later during a train 
and thus lead to a smaller depolarization. This is also reflected in the fact, that 
Rin,UP/Rin,rest < 1 at p8. At this age, the KIR conductance density presumably is 
not sufficient to counteract the conductance increase during episodes of higher 
synaptic activity.  

 In order to estimate the level of synaptic activity necessary to induce UP-
states during postnatal development, we adjusted the mean synaptic activation 
frequency to elicit UP-states of about 15 mV amplitude. One has to note, 
however, that knowledge of UP-state amplitude in young animals is 

 

 
Fig. 3.19  Dependence of UP-state amplitude on mean synaptic activation frequency (data 
as mean ± standard deviation). A, UP-state amplitude versus mean synaptic activation 
frequency. Ages are color-coded, dotted line denotes experimental value for p28. B, mean 
synaptic activation frequency necessary to elicit UP-states of 15 mV amplitude, versus 
age, assuming the same number of synapses for all ages. 
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 p8 p14 p21 p28 p45 

ΔV0.5 / mV 39 ± 2 46 ± 2 40 ± 2 37 ± 2 33 ± 2 

f15 / Hz 0.09 ± 0.05 0.08 ± 0.04 0.13 ± 0.05 0.17 ± 0.06 0.18 ± 0.07 

Table 3.4  Age-dependent UP-state properties: ΔV at tested maximal mean frequency f = 
0.5 Hz and frequency needed to elicit UP-states of 15 mV amplitude. Data as mean ± 
standard deviation. 

 

scarce, and this scenario is therefore hypothetical. Also, it is unclear whether 
changes in UP-state amplitude are due to changes in number of synapses, 
synaptic strength, synaptic activation frequency, ratio between excitation and 
inhibition, or a combination thereof. Thus, the prediction of our model will need to 
be tested experimentally in the future. 

 

Synaptic input onto refined full-morphology model 

In order to test whether the number and mean activation frequency of synapses 
found in single compartments elicit comparable UP- and DOWN-states in model 
cells based on reconstructed morphologies, the refined full-morphology sub-
threshold model as presented in the last chapter was used. For this simulation a 
homogeneous distribution of synapses was applied to the morphology. 
UP/DOWN-state protocol was the same as for the single-compartment cells. 

 

 
Fig. 3.20  Simulated UP/DOWN states in a fully reconstructed L2/3 neuron with 
heterogeneous ion channel distributions. Two current steps of -300 pA for 100 ms were 
injected during and after the UP-state. Grey traces show single runs, red trace shows the 
average. 

 

 Fig. 3.20 shows the result of five UP/DOWN-state simulations with a 
homogenous distribution of 9911 excitatory and 1982 inhibitory synapses on the 
dendritic tree. With the same mean synaptic frequencies as for the p45 single-
compartment model, an UP-state of 14.4 mV was elicited (VUP = -67 mV vs Vrest = 
-81.4 mV). Rin increased 1.64–fold (from 38.7 MΩ at rest to 63.3 MΩ during UP-
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state), which is in good agreement with the value obtained in single-compartment 
cells.  

 

 

3.3 Discussion 
In the following paragraphs, we will compare our L2/3 pyramidal neuron model to 
previously built models, set our model parameters in relationship to our 
experimental data and interpret the predictions made by the age-dependent 
model in respect to UP- and DOWN-states. 

 

3.3.1  Automated parameter search by simulated annealing 

Performance of the simulated annealing algorithm 

In this work, we programmed and tested a simulated annealing (SA) algorithm for 
parameter optimization for realistic neuronal models constrained by experimental 
data. To our knowledge, this is the first time such an algorithm has been used to 
build a neuronal model constrained by noisy experimental data. Previous 
attempts were limited to parameter retrieval from artificial data sets (Vanier & 
Bower, 1999; Weaver & Wearne, 2006). 

 To our initial surprise, during test runs the SA algorithm was able to find 
solutions in parameter space (lower error values upon convergence) than 
theoretically expected. We attribute this to the low frequency components of the 
added 1/f noise. These could be fitted by the Ih current, in particular when its 
kinetics was allowed to vary. Because Ih current is not very prominent in L2/3 
pyramidal neurons, the conductance densities found for the age-dependent 
model therefore have to be considered with caution as they might be confounded 
by the low frequency noise in the model-constraining experimental data. 

 Among the variants tested, the fully automated SA algorithm performed 
best as judged from the quality of fit per computational effort. This was 
particularly prominent for higher noise levels. Of the alternative modes used for 
our SA algorithm, the variance-dependent annealing schedule (equation 3.10) 
was the most efficient. While the starting temperature (equation 3.11) was 
usually chosen very high, equation 3.10 quickly brought it to levels in the regime 
of the error values themselves (Fig. 3.5C). The main parameter governing the 
behavior is delta, which for the age-dependent model was set to a value of delta 
= 0.1 during parameter search, leading to slower annealing close to “thermal” 
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equilibrium (Das et al., 1990). The expansion causing most problems was the 
(again) variance-dependent termination criterion, which caused the algorithm to 
exit prematurely without having found a satisfying solution. This behavior was 
due to the fact that in equation 3.12 the left side can accidentally become 
arbitrarily small, although the variance in encountered error values is still high. 
Therefore we set the governing parameter epsilon to a very small value, thereby 
disabling this SA algorithm mechanism. 

 

Simulated annealing versus genetic algorithms 

An alternative to SA for non-linear optimization in high-dimensional parameter 
spaces is the class of so-called genetic or evolutionary algorithms (Goldberg, 
1989; Eichler-West & Wilcox, 1997; Baldi et al., 1998). These types of algorithm 
use a fixed-size “population” of parameter sets, of which each “individual” is 
associated with a certain “fitness” (error function). Each new “generation” is 
generated by “cross-breeding” (either exchange or averaging parameter sets of 
fittest individuals) and “mutation” (random changes in single parameter values). 
Worst individuals become “extinct”. Upon convergence, the differences between 
individuals become arbitrarily small and the whole population is optimally 
adapted to its “environment” (error landscape). This algorithm was analyzed by 
Vanier & Bower (1999) and was found to perform similarly to the SA algorithm. 
For neuronal models, it has been used in parameter retrieval (Keren et al., 2005) 
and analysis of parameter landscapes (Achard & De Schutter, 2006).  

 While in the comparative study by Vanier & Bower (1999), the SA 
algorithm performed slightly better in medium-sized parameter spaces (up to 20 
dimensions), the advantage of genetic algorithms is their inherently parallel 
structure. Because each individual of a population will be changed once per 
generation, the fitness of the whole generation can be computed at the same 
time. In contrast, in the SA algorithm used here only one vertex can be treated at 
a time, making the algorithm inherently serial. However, new simulation 
algorithms can distribute the workload of the single simulation run itself onto 
several computer processors, thereby reducing total computational time 
considerably. Another strategy would be to divide the parameter space into 
sections, in each of which a separate SA algorithm is run (parallel search). 
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3.3.2  Age-dependent L2/3 pyramidal cell models 

Comparison to experimental data 

With our automated parameter search we aimed at reproducing age-dependent 
changes of L2/3 pyramidal cell properties as determined by electrophysiological 
experiments. We focused on the sub-threshold voltage regime determining the 
cell’s basic integrative properties onto which further excitability builds. 
Furthermore, the number of free parameters is limited compared to the supra-
threshold regime and because the simulation results are directly comparable to 
our experimental data and the conductance values derived thereof. 

 In our single-compartment models the conductance density gKIR changed 
in parallel to the total KIR conductance GKIR as derived from the Hodgkin-Huxley 
(HH) fit to experimental I-V curves (equation 2.7; Fig. 2.27). This result 
satisfyingly confirms our method proposed in chapter 2.3.3. In addition, we were 
able to assess the Ih conductance density gIh, which was not possible with the 
HH fit method. Consistent with our experimental data gIh was very small in our 
model for all ages and maybe even overestimated, as implied by our parameter 
retrieval test runs (Fig. 3.7A) and the simulated pharmacology (Fig. 3.14). 
However, Ih was poorly constrained by our experimental data. Here, additional 
data from voltage-clamp experiments in L2/3 pyramidal cells would be helpful. In 
addition, we estimated the influence of morphological changes on ion channel 
densities by normalizing all conductance densities to a membrane capacitance of 
Cm = 1 μF/cm2. For gIh and gKIR this yielded a similar developmental curve, but 
gleak did not show any developmental changes anymore. Therefore, we conclude, 
that developmental changes in leak conductance density are completed before 
p8 and that all changes in Rin are attributable to changes in morphology, gKIR and 
(to lesser degree) gIh. 

 The parameter search in models with fully reconstructed morphologies, 
however, yielded similar developmental changes in Cm compared to the HH-fit 
presented in chapter 2.3.3. This might have several reasons: (1) morphological 
reconstructions were biased towards underestimation of dendritic diameters in 
older cells which might be due to either problems with the optics of the 
NeuroLucida system itself or to tissue shrinkage of the slice tissue during fixation 
procedures (Jaeger, 2001); (2) severe increase in spine density might lead to 
increased surface area relative to dendrite diameter; (3) under-estimation of axial 
resistance Rax (in these simulations set to 120 Ω·cm) might lead to a decreased 
electrically effective surface area which had to be corrected for by an increase in 
Cm. The last point, however, does not seem very likely, as in the full morphology 
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model based on dual recordings Rax was found to be even higher (Rax = 191 
Ω·cm). Concerning the second point, in other models (Traub et al., 2003; Traub 
et al., 2006) the spine correction factor was set to a value of around 2, which for 
mature cells (p45) is well below the value observed in our simulations (3.6 ± 0.7 
μF/cm2, in this context Cm corresponds to the spine correction factor directly). 
This discrepancy could mean that the number of proximal spines has been 
underestimated until now for building neuronal models, and that this number 
increases during postnatal development. 

 

Comparison with other models 

To our knowledge the models presented here are the first age-dependent L2/3 
pyramidal cell models. In addition, virtually all other models concentrate on the 
output with respect to firing pattern, and not on the dendritic integration of 
synaptic input. Therefore, L2/3 pyramidal cell models previously published are 
only presented in respect to their firing behavior (Traub et al., 2003; Traub et al., 
2006; van Drongelen et al., 2006; van Drongelen et al., 2007), which complicates 
the comparison of integrative properties between models. 

 The most detailed L2/3 pyramidal cell model available to date is the model 
published by Traub et al. (2003). It includes 11 different conductances, most of 
them responsible for firing behavior and AP waveform. The ion channels 
governing sub-threshold behavior are the leak conductance, Ih (termed 
anomalous rectifier), a persistent Na+-channel (NaP), and the A-type K+-channel 
(KA). Because in our analysis NaP did not appear to be present in L2/3 pyramidal 
cells and KA was not considered in our model, we can only compare leak and Ih 
conductances. In the Traub model, gleak was set to 20 μS/cm2 (compared to a 
gleak of around 150 μS/cm2 in our model). This yielded an input resistance Rin of 
around 70 MΩ, which expectedly was higher than the value we modeled (45-50 
MΩ). Ih was set to a value much higher than in our adult model (250 μS/cm2). Ih 
might contribute much more to anomalous rectification in the Traub model than in 
our model. Therefore, we assume that synaptic integration in that model, 
especially when included in a network model (Traub et al., 2006), behaves 
differently from what one would expect experimentally. Further models did not 
make much effort in modeling sub-threshold behavior (van Drongelen, 2006; van 
Drongelen, 2007; Rhodes, unpublished) or included very different ion channel 
sets, making a comparison difficult (e.g. NaP in Segev, unpublished). In 
summary, we are convinced that a solid understanding of the basic electrical 
properties of L2/3 neurons is absolutely required for building a realistic model 
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that is capable of reproducing cellular behavior under in vivo conditions. The 
models built so far have captured certain aspects but do clearly not provide a 
comprehensive description of L2/3 pyramidal neurons. In the future all aspects 
that pass experimental testing may be combined to yield a more complete model. 

 The ion channel kinetics we used for our model were mainly taken from 
Day et al. (2006). However, since channel kinetics were made free parameters 
during automated parameter search, it is interesting to see how the mean 
kinetics used in our model deviates from the original kinetics. The parameters are 
listed in Table 3.5. While the shape of the activation curves and the time constant 
are similar, all curves are shifted to more hyper-polarized values in our model. 
This might be a property of L2/3 pyramidal neurons compared to the L5/6 
pyramidal cells in mouse prefrontal cortex investigated in Day et al. (2006). 

 

 Day et al., 2006 Our model 

AIh / μs-1 10 11 ± 1 

γIh 0.6 0.51 ± 0.04 

qIh / e 4.2 4.9 ± 0.1 

V1/2,Ih / mV -90 -97 ± 2 

τ0,Ih / ms 1.2 0.6 ± 0.2 

Vh,KIR / mV -90 -96 ± 3 

Vc,KIR / mV 12.1 11.8 ± 1 

Table 3.5  Comparison between kinetics in our model and those presented in Day et al. 
(2006). Values for our model are from single compartment fits for p45. Values for Ih from 
Day et la. were derived from best fit of equation 3.1 to their kinetic curves. 

 

 

Variability and averaging 

One of the advantages of our approach was that besides obtaining average 
values for an age-dependent L2/3 pyramidal cell model we could also assess the 
variability in all parameters. This is useful for several reasons: (1) comparison 
with other models is simplified, as we have an objective measure to decide 
whether two models incorporating the same ion channels still are similar, even if 
the exact conductance values differ; (2) when building a network model, cells can 
be inserted with a certain variability governed by the standard deviation of 
parameters; (3) variability of ion channel properties are a determining factor in 
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neuronal networks activity, although the mechanisms governing this variability 
still remain to be elucidated. 

 It was shown in several studies (Golowasch et al., 2002; Goldman et al., 
2001) that averaging of parameters derived from single cell fits in order to build 
the “average neuron” often leads to qualitatively different behavior. This was 
shown in respect to supra-threshold behavior such as bursting, but we cannot 
exclude that this might also apply to sub-threshold behavior as investigated in 
this study. Therefore, the averaged age-dependent single-compartment and full-
morphology models have to be considered with caution and can only be used 
with the respective standard errors of each parameter. 

 

 

3.3.3  UP- and DOWN-states 

In this study, we aimed to reproduce the results from Waters & Helmchen (2006) 
with a mechanistic conductance-based model of L2/3 pyramidal cells. Beyond 
that, qualitative changes in integrative properties during postnatal development 
could be elucidated and predictions about cellular behavior at younger ages 
could be made. 

 In our adult single compartment model, frequencies of 0.18 Hz for 
excitatory and 0.03 Hz for inhibitory synapses were sufficient to elicit UP-states 
of 15 mV amplitude (Table 3.4). These frequencies are only about half the values 
presented in Waters & Helmchen (2006). This might be due to the fact that their 
exact values for Rin and cAR are only around 50% of the values found in this 
study, which might be caused by in vivo neuromodulation which was not 
accounted for in this study (e.g. Stanfield et al., 1985). Still, the mean firing rate 
required for 15 mV UP-states is almost double the rate that was estimated from 
in vivo experiments in neuronal populations of L2/3 (Kerr et al., 2005). This 
suggests that additional activity is required from other neuronal populations 
besides L2/3, which might stem from deeper cortical layers (Cowan & Wilson, 
1994; Timofeev et al., 2001) or other brain areas (e.g. Battaglia et al., 2004). 
While Rin increased during UP-states in model neurons for p14 or older, in p8 
neurons Rin decreased during UP-states, although these cells show the highest 
cAR. The reason was, that part of the effect of AR was “overwritten” by the 
conductance change due to synaptic activity.  

 How will developmental changes in intrinsic biophysical properties of L2/3 
pyramidal neurons shape activity patterns during UP/DOWN-states? Under the 
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assumption that synaptic strength and amplitude of UP-states do not change 
during development, the higher Rin of young neurons imply that less synaptic 
input is required than in matured networks in order to reach the UP-state. This 
could be due to a less dense (immature) connectivity or a generally reduced 
network activity. In adult cells, on the other hand, small synaptic inputs will not 
elevate the membrane potential substantially due to the small Rin, but strong 
synaptic input will be amplified by AR. This might serve as feature detection in 
respect to network activity. Our prediction thus would be that in young neocortical 
networks, activity UP-states is even sparser than in adult networks. Only very 
sparse experimental data is available on the postnatal development of 
UP/DOWN-states (Johnson & Buonomano, 2007), so that this will need to be 
elucidated in future in vivo experiments. 

 

 

3.3.4  Expanding the model towards supra-threshold behavior 

At the present stage, the model presented here reproduces the sub-threshold 
behavior of L2/3 pyramidal neurons. The next step necessary to complete the 
model will be to include mechanisms responsible for generation of regenerative 
events (APs, dendritic spikes). This will include fast Na+- and delayed rectifier K+-
channels for AP generation itself as well as a variety of Ca2+-, K+-, and Ca2+-
dependent ion channels for frequency attenuation and exact AP waveform. This 
will elevate the number of free parameters n well above 20 (Keren et al., 2005; 
Achard & De Schutter, 2006). 

Fitting AP waveform requires an error function different from the squared-
error function used in sub-threshold fitting, because one or two APs only make 
up a very small fraction of all data points due to the low firing frequency of L2/3 
pyramidal neurons during a 500-ms trace. Simply using equation 3.12 favours 
traces without any AP since no AP will lead to a smaller error value than a trace 
with the right number of APs, but shifted in time. Le Masson & Maex (2001) 
proposed an error function based on analyzing the trajectory density on a phase 
plane. Plotting the first derivative of the voltage in time, dV/dt, versus voltage V, 
APs lead to very characteristic loops within this phase plane. Still, simply 
comparing curves over the whole stimulus period does not lead to a good 
description of AP waveform since most of the points describe what happens 
between APs (which is little indeed). Thus, for test runs with our SA algorithm, a 
small time window was centred around the first simulated AP and the distance of 
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the loop to a corresponding experimentally measured loop in phase plane was 
computed using the squared error: 
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Here the dots denote the first derivative in time, dV/dt. The constant c was 
introduced in order to adjust units and was generally set to 1 ms. The reason for 
using the phase plane instead of simply the voltage values alone lies in the fact 
that fast transient behaviour (e. g. the very fast rising phase of the AP) is better 
characterized than by voltage alone. 

 

 
Fig. 3.4  Error function based on phase-plane analysis for reproducing AP firing. A, 
measured (black) versus simulated (red) AP and the respective time-windows over which 
the error is summed. B, phase-plane representation of the two APs shown in A. The error 
is computed using equation 3.13. 

 

 

Penalty functions 

In the case of fitting AP waveform additional penalty functions were introduced to 
the error function. Obviously, the first step was to penalize the complete absence 
of APs. Previously this was done by simply setting the error function to a very 
high value (usually 1012) that represents a potential barrier that cannot be 
overcome by the simplex at any temperature. Problematic here are several 
issues, though: If there exist non-connected islands in parameter space where 
APs are fired, and the complete simplex sets off in one of them it will never reach 
any other of these islands; secondly, temperature reduction might be difficult to 
calculate (equation 3.10) since the variance in error function values is either big 
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(alternation between presence of AP and no AP) or very small (if for example no 
AP was fired over a complete Metropolis cycle the variance will become 0). Thus, 
instead of using a fixed value that cannot be overcome, equation 3.17 was 
replaced by equation 3.14, the squared voltage error was calculated over the 
complete stimulus period. A second step concerned the exact timing of elicited 
APs. Here, if an AP was elicited the error calculated in equation 3.17 was 
multiplied by (1+||Δtrel||), where Δtrel denotes the relative error in timing of 
simulated versus measured AP. 

 

Preliminary results and future challenges 

In preliminary simulations for reproducing AP waveform and general firing 
behavior the following channels were used: a fast Na+-channel and a delayed 
rectifier K+-channel for basic AP generation; A-type K+-channel for the delay 
between stimulus onset and first AP; L- and T-type Ca2+-channels; a voltage and 
Ca2+-dependent K+-channel; simple Ca2+-dynamics for exponential Ca2+-
extrusion. Different channel kinetics were tested and translated into the 
formulation used here (equation 3.1; channels taken from Mainen et al., 1995; 
Traub et al., 2003; Belluzzi & Sacchi, 1991; Rhodes, unpublished; Poirazi et al., 
2003). Resulting kinetic parameters in equation 3.1 could vary strongly, 
depending on which channel was used. This led us to leaving free kinetic 
parameters mainly unconstrained. 

 Finding parameter sets with an error function following equation 3.17 
which reproduced AP waveform was extremely difficult in single compartment 
models. In most cases, the SA algorithm was satisfied with the model generating 
a small “bump” where the actual AP should have happened. In cases where APs 
were generated, AP waveform was far from optimal in comparison to 
experimental data. The main problem seemed to be that free kinetic parameters 
led to too many degrees of freedom so that the algorithm cooled down before 
encountering a near-optimal solution. Therefore, we kept the kinetics fixed and 
varied only the conductance densities. This, too, did not result in satisfying AP 
waveforms. In addition, some of the kinetics (Traub et al, 2003) were to 
“nervous”, easily resulting in extremely high firing frequencies, while others were 
to slow (Mainen et al., 1995). 

 One of the main problems with AP waveform in L2/3 pyramidal cells is the 
relatively high threshold of around -35 mV. Since simple shifting of kinetics to 
more depolarized potentials did not result in the required behavior, we switched 
to using a full-morphology model with a generic axon (following Mainen & 
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Sejnowski, 1995), in which the AP was generated within the first node of Ranvier 
and the kinetics of the fast Na+-channel and the delayed rectifier K+-channel 
were shifted to more depolarized potentials. These measures had little effect on 
the AP threshold, however. 

 The challenges for future simulations of L2/3 pyramidal cells which also 
display the experimentally observed supra-threshold behavior are the following: 
(1) definition of an error function that captures AP waveform as well as general 
firing behavior; combination of an inter-spike interval (ISI) based function with the 
phase-plane base function presented above appear promising; (2) step-wise 
expanding of the set of channels included in the model, as not all channels 
determine e.g. AP waveform; (3) developing of methods for thoroughly testing 
which kinetic parameters of which channels the supra-threshold behavior is 
sensitive to, i.e. a better definition of error landscape (Achard & De Schutter., 
2006) 
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Anomalous rectification 

The main finding in this study is that the anomalous rectification (AR) observed in 
pyramidal neurons of cortical L2/3 is caused by an inward-rectifier potassium 
(KIR) current, the expression of which increases during the first six weeks of 
postnatal development. Based on numerical simulations we conclude that AR 
counterbalances the progressive reduction in input resistance Rin in these cells 
during the postnatal development. Indeed, AR seems to be an abundant theme in 
the mammalian CNS and has been reported for motoneurons of the brainstem 
and the spinal chord (Nelson & Frank, 1967; Chandler et al., 1994; Bayliss et al., 
1994; Heckman, 2003), cerebellar Purkinje cells (Crepel & Penit-Soria, 1986; Li 
et al., 1993), hippocampal pyramidal neurons (Seeger & Alzheimer, 2001), 
cortical interneurons (Gorelova et al., 2002) and pyramidal cells different from 
those in L2/3 (Stafstrom et al., 1982; Stafstrom et al., 1985). The reason for this 
abundance could be that AR provides a mechanism to counterbalance the 
conductance increase that is caused by strong synaptic activation and that 
renders each additional synaptic input less effective. The precise consequences 
of this mechanism for synaptic integration under in vivo conditions in the 
neocortex remain to be elucidated in further experiments. In addition, it is unclear 
which role modulatory effects on AR, e.g. via cholinergic or dopaminergic 
ascending systems, might play in shaping the response of L2/3 pyramidal cells to 
synaptic activity in vivo. 

 

Developmental changes 

During postnatal development, L2/3 pyramidal neurons were found to change 
their electrophysiological properties until 4-5 weeks after birth, while 
morphological development was complete already 2 weeks after birth. The most 
rapid changes in electrophysiological properties took place within the second 
week after birth, while later changes might rather represent fine tuning of the 
cell’s responsiveness. This period around p14 has previously been found to be a 
critical period in L2/3 of somato-sensory cortex of rats (Lendvai et al., 2000; Stern 
et al., 2001; Maravall et al., 2004a). Therefore, in future in vivo experiments on 
the interplay of the effects of single-cell properties and network activity at 
different developmental stages, special attention has to be turned on this period. 
One would expect the most pronounced changes in network responses to stimuli 
as well as spontaneous activity in these cortical networks during this period
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since the receptive field as well as the responsiveness to synaptic input change 
most then. With respect to morphologies, it would also be interesting to assess 
how the volume covered by axons of L2/3 pyramidal neurons changes, as this 
will constrain possible network architectures that can be tested for in simulation. 
Also, estimating the change in numbers of pre- and post-synaptic terminals will 
be interesting as this (together with the network activity) will further constrain the 
spatio-temporal pattern of synaptic input.  

 

Modeling 

The simulated annealing (SA) algorithm to our knowledge was here for the first 
time applied to noisy data in order to build a valid model. In our opinion, this 
approach was successful, as parameter sets displayed a certain stability from cell 
to cell, and all values are within reasonable physiological ranges. However, a 
major problem of this algorithm is its intrinsic serial computing, which prevents 
efficient application on multi-processor computers. Two strategies to overcome 
this limitation seem reasonable: (1) intelligent dividing of parameter space into 
sub-spaces, in each of which an independent SA algorithm is run; or (2) 
parallelizing the numerical simulation itself. As several parallel simulation 
programs will become available in the near future, the second strategy seems 
promising. Also, in our experience the SA algorithm itself was never the 
“bottleneck” for computational time needed for convergence. As we showed in 
this work, automated parameter search can be quite rewarding when single-cell, 
single-experiment data are available. Basically, the parameter sets obtained 
could be directly implemented into a model network such as a single column. 

 

Outlook 

The main question that arises from the experiments presented here is how 
developmental changes in biophysical properties of single L2/3 pyramidal 
neurons influence or are accompanied by changes in network properties of the 
intact cortical L2/3. In particular, how spontaneous and stimulus-evoked activity 
does developmentally evolve in these networks has not been understood nor 
even systematically investigated in vivo yet. In order to approach this problem, 
again a dual experimental and modeling approach will be needed. 

 New experimental techniques allow to image populations of neurons with 
single-cell and single-AP resolution in the intact brain by combining bulk-loading 
of cortical tissue with fluorescent Ca2+-sensitive dyes and subsequent imaging 
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with two-photon excitation (Stosiek et al., 2003; Nimmerjahn et al., 2004; Kerr et 
al., 2005; Gobel et al, 2007). These techniques will enable us to measure the 
spread of neural activity during spontaneous UP-states and during stimulus-
evoked network responses for animals of different developmental stages. 
However, experimental procedures have to be developed for young animals, as 
several problems will arise here with anesthesia and stability during recordings. 
Optical imaging will be accompanied by simultaneous electrophysiological 
experiments on the single-cell level (whole-cell patch-clamp) and the network 
level (electro-corticogramm, ECoG). Reconstruction of single-cell dendritic and 
axonal trees will allow estimation of the network’s connectivity and topology at 
different ages. 

 Thus in the future, new experimental data will be used to constrain 
network simulations of L2/3 in order to elucidate the basic principles of 
organization and function of this layer and its interaction with other layers. To this 
end, age-dependent single cell properties have to be transferred to simpler 
models, e.g. spike-response models (SRM; see e.g. Gerstner & Kistler, 2002), 
which reproduce the features of L2/3 pyramidal cells without the same need for 
computation power as complicated conductance-based models such as those 
presented in this study (Kistler et al., 1997). These simplified models then can be 
used to build age-dependent network models, elucidating interactions between 
developmental changes in synaptic inputs, connectivity, network topology and 
biophysical properties of single cells.  
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7  List of abbreviations 
 
AHP  after-hyperpolarization 
AP  action potential 
AR  anomalous rectification 
BaCl2  barium chloride 
Ca2+  calcium ions 
cAR  coefficient describing anomalous rectification 
Cl-  chloride ions 
Cm  specific membrane capacitance 
CNS  central nervous system 
EPSP  excitatory post-synaptic potential 
Erev,X  reversal potential of ion species X 
F  Faraday’s constant 
GHK  the Goldman-Hodgkin-Katz equation 
HH  Hodgkin-Huxley description of ion channel kinetics 
gx  specific conductance density of channel x 
Gx  total conductance of channel x 
Ih  hyperpolarization-activated current 
IPSP  inhibitory post-synaptic potential 
K+  potassium ions 
KIR  inward rectifying potassium (channel) 
Na+  sodium ions 
PSP  post-synaptic potential 
R  universal gas constant 
Rin  input resistance 
T  absolute temperature 
TTX  tetrodotoxin 
V  voltage 
VAHP  amplitude of AHP relative to Vthresh  
Vamp  AP amplitude relative to Vthresh

Vm  membrane potential 
Vrest  resting membrane potential 
Vthresh  threshold membrane potential for eliciting an AP 
[X]i  intracellular concentration of ion species X 
[X]o  extracellular concentration of ion species X 
ZD7288 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium  
  chloride 
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