106 research outputs found

    The p400 Complex Is an Essential E1A Transformation Target

    Get PDF
    AbstractHere, we report the identification of a new E1A binding protein complex that is essential for E1A-mediated transformation. Its core component is a SWI2/SNF2-related, 400 kDa protein (p400). Other components include the myc- and p/CAF-associated cofactor, TRRAP/PAF400, the DNA helicases TAP54α/β, actin-like proteins, and the human homolog of the Drosophila Enhancer of Polycomb protein. An E1A mutant, defective in p400 binding, is also defective in transformation. Certain p400 fragments partially rescued this phenotype, underscoring the role of E1A-p400 complex formation in the E1A transforming process. Furthermore, E1A and c-myc each alter the subunit composition of p400 complexes, implying that physiological p400 complex formation contributes to transformation suppression

    Creation of multiple nanodots by single ions

    Full text link
    In the challenging search for tools that are able to modify surfaces on the nanometer scale, heavy ions with energies of several 10 MeV are becoming more and more attractive. In contrast to slow ions where nuclear stopping is important and the energy is dissipated into a large volume in the crystal, in the high energy regime the stopping is due to electronic excitations only. Because of the extremely local (< 1 nm) energy deposition with densities of up to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence. Usually, each nanodot is due to the impact of a single ion and the dots are randomly distributed. We demonstrate that multiple periodically spaced dots separated by a few 10 nanometers can be created by a single ion if the sample is irradiated under grazing angles of incidence. By varying this angle the number of dots can be controlled.Comment: 12 pages, 6 figure

    The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    Full text link
    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf -- main sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM high-quality pairs from the SDSS DR8 spectroscopic database. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{\alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types \leqM7. Our results show that early-type M dwarfs (\leqM4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems becomes more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk-disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully-convective stars. (Abridged)Comment: 21 pages, 19 figures, emulateapj style, accepted to Astronomical Journal June 28, 201

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    A Membrane-Bound Vertebrate Globin

    Get PDF
    The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein

    Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    Get PDF
    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments

    Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    Get PDF
    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment

    Evaluation of intratumoral response heterogeneity in metastatic colorectal cancer and Its impact on patient overall survival: findings from 10,551 patients in the ARCAD database

    Get PDF
    Metastatic colorectal cancer (mCRC) is a heterogeneous disease that can evoke discordant responses to therapy among different lesions in individual patients. The Response Evaluation Criteria in Solid Tumors (RECIST) criteria do not take into consideration response heterogeneity. We explored and developed lesion-based measurement response criteria to evaluate their prognostic effect on overall survival (OS). Patients and Methods: Patients enrolled in 17 first-line clinical trials, who had mCRC with ≥ 2 lesions at baseline, and a restaging scan by 12 weeks were included. For each patient, lesions were categorized as a progressing lesion (PL: > 20% increase in the longest diameter (LD)), responding lesion (RL: > 30% decrease in LD), or stable lesion (SL: neither PL nor RL) based on the 12-week scan. Lesion-based response criteria were defined for each patient as follows: PL only, SL only, RL only, and varied responses (mixture of RL, SL, and PL). Lesion-based response criteria and OS were correlated using stratified multivariable Cox models. The concordance between OS and classifications was measured using the C statistic. Results: Among 10,551 patients with mCRC from 17 first-line studies, varied responses were noted in 51.6% of patients, among whom, 3.3% had RL/PL at 12 weeks. Among patients with RL/SL, 52% had stable disease (SD) by RECIST 1.1, and they had a longer OS (median OS (mOS) = 19.9 months) than those with SL only (mOS = 16.8 months, HR (95% CI) = 0.81 (0.76, 0.85), p < 0.001), although a shorter OS than those with RL only (mOS = 25.8 months, HR (95% CI) = 1.42 (1.32, 1.53), p < 0.001). Among patients with SL/PL, 74% had SD by RECIST 1.1, and they had a longer OS (mOS = 9.0 months) than those with PL only (mOS = 8.0 months, HR (95% CI) = 0.75 (0.57, 0.98), p = 0.040), yet a shorter OS than those with SL only (mOS = 16.8 months, HR (95% CI) = 1.98 (1.80, 2.18), p < 0.001). These associations were consistent across treatment regimen subgroups. The lesion-based response criteria showed slightly higher concordance than RECIST 1.1, although it was not statistically significant. Conclusion: Varied responses at first restaging are common among patients receiving first-line therapy for mCRC. Our lesion-based measurement criteria allowed for better mortality discrimination, which could potentially be informative for treatment decision-making and influence patient outcomes
    corecore