47,972 research outputs found
N-port rectangular-shaped distributed RC NETWORKS
Dielectric material between resistive thin film and pure conductor considered as n-port distributed RC networ
Synthesis of active distributed RC networks
Open-circuit transfer function of two-port network expressed as rational function with real coefficient
Spherical to deformed shape transition in the nucleon-pair shell model
A study of the shape transition from spherical to axially deformed nuclei in
the even Ce isotopes using the nucleon-pair approximation of the shell model is
reported. As long as the structure of the dominant collective pairs is
determined using a microscopic framework appropriate to deformed nuclei, the
model is able to produce a shape transition. However, the resulting transition
is too rapid, with nuclei that should be transitional being fairly well
deformed, perhaps reflecting the need to maintain several pairs with each
angular momentum.Comment: 7 pages, 5 figure
The transmission or scattering of elastic waves by an inhomogeneity of simple geometry: A comparison of theories
The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown
Transductive Multi-View Zero-Shot Learning
(c) 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms
Learning Multimodal Latent Attributes
Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning
Topological current of point defects and its bifurcation
From the topological properties of a three dimensional vector order
parameter, the topological current of point defects is obtained. One shows that
the charge of point defects is determined by Hopf indices and Brouwer degrees.
The evolution of point defects is also studied. One concludes that there exist
crucial cases of branch processes in the evolution of point defects when the
Jacobian .Comment: revtex,14 pages,no figur
Identification and characterization of the dominant thermal resistance in lithium-ion batteries using operando 3-omega sensors
Poor thermal transport within lithium-ion batteries fundamentally limits their performance, safety, and lifetime, in spite of external thermal management systems. All prior efforts to understand the origin of batteries' mysteriously high thermal resistance have been confined to ex situ measurements without understanding the impact of battery operation. Here, we develop a frequency-domain technique that employs sensors capable of measuring spatially resolved intrinsic thermal transport properties within a live battery while it is undergoing cycling. Our results reveal that the poor battery thermal transport is due to high thermal contact resistance between the separator and both electrode layers and worsens as a result of formation cycling, degrading total battery thermal transport by up to 70%. We develop a thermal model of these contact resistances to explain their origin. These contacts account for up to 65% of the total thermal resistance inside the battery, leading to far-reaching consequences for the thermal design of batteries. Our technique unlocks new thermal measurement capabilities for future battery research
Local Spin Susceptibility of the S=1/2 Kagome Lattice in ZnCu3(OD)6Cl2
We report single-crystal 2-D NMR investigation of the nearly ideal spin S=1/2
kagome lattice ZnCu3(OD)6Cl2. We successfully identify 2-D NMR signals
originating from the nearest-neighbors of Cu2+ defects occupying Zn sites. From
the 2-D Knight shift measurements, we demonstrate that weakly interacting Cu2+
spins at these defects cause the large Curie-Weiss enhancement toward T=0
commonly observed in the bulk susceptibility data. We estimate the intrinsic
spin susceptibility of the kagome planes by subtracting defect contributions,
and explore several scenarios.Comment: 4 figures; published in PR-B Rapid Communication
Irreducible MultiQutrit Correlations in Greenberger-Horne-Zeilinger Type States
Following the idea of the continuity approach in [D. L. Zhou, Phys. Rev.
Lett. 101, 180505 (2008)], we obtain the degrees of irreducible multi-party
correlations in two families of -qutrit Greenberger-Horne-Zeilinger type
states. For the pure states in one of the families, the irreducible 2-party,
-party and -party () correlations are nonzero, which is
different from the -qubit case. We also derive the correlation distributions
in the -qutrit maximal slice state, which can be uniquely determined by its
-qutrit reduced density matrices among pure states. It is proved that
there is no irreducible -qutrit correlation in the maximal slice state. This
enlightens us to give a discussion about how to characterize the pure states
with irreducible -party correlation in arbitrarily high-dimensional systems
by the way of the continuity approach.Comment: 5p, no fi
- …