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ABSTRACT

The extended metnhod of equivalent inclusion developed earlier by
Fu (August, 1981), (February, 1982) is applied to study the specific wave
problems (i) the transmission of elastic waves in an infinite medium con-
taining a layer of inhomogenelty, and (ii) the scattering of elastic waves
in an infinite medium containing a perfect spherical inhomogeneity. The
eigenstrains are expanded as a geometric series and method of integration
for the inhomogeneous Helmholtz operator given by Fu and Mura (1982) is
adopted.

The purpose of the study is to compare results, obtained by using
limited number of terms in the sigenstrain expansion, with exact solutions
for the layer problem and that for a pexfect sphere. Two parameters are
singled out for this comparison: the ratio of elastic moduli, F=(\'+2n')/
(M2y), and the ratio of the mass densities, h=p'/p. General trend for
three different situations are shown: (i) a p=0, (A M22W#0, (ii) A p#0,

(A M2AW)=0 and (iii) A 0#0, (A AR A W#0. In the last case, material systems

given in Truell, Elbaum and Chick (1969) are studied.



PRECEDING PAGE BLANK NOT FILME,

TABLE OF CONTENTS

Page
ABSTRACTO..D'...!..I'.'Il..'.l..l... ii
LIST OF TABLES & & v v v v v v v v e v o v o o o e o e o o e iv
LIsTOFFlcuRES ® e & & 8 8 8 ¢ s 8 » " 2 2 & » T ¢ s s 0 V
CHAPTER 1. INTRODUCTION . & &+ & o &« 4o o o o o o s o o o s o o & 1
CHAPTER 2. WAVE MOTION IN AN ELASTIC MEDIUM . . . . . « . . . . 3
2.1. Governing Equation . . . & « + ¢ ¢ 4 4 0 4 w00 3
2.2, 1Initial and Boundary Conditions . . . . . . . . . . 4
2.3, Time-Harmonic Wave Problem . . . . . . . +« « + . . 5
CHAPTER 3. INHOMOGENEITY PROBLEMS ., . . . . « v & ¢ o o o & « & 7
3.1. Transmission and Reflection of Waves in an Infinite
Three-Layered Medium . . . . . . « « « « ¢ o « o o & 7
3.1.1. Integration of the governing differential
equation . . . o . o e e e 2 e e e 7
3.1.2. Extended method of equlvalent inclusion . . o
3.2. Scattering of Waves by a Spherical Inhomogeneity . . 13
3.2.1. Method of separation of variables . . . . . 14
3.2.2. Extended method of equivalent inclusion . . 17
CHAPTER 4. COMPARISON OF COMPUTATIONAL RESULTS . . . . . . . . 22
4.1. Three-Layered Medium Problem . . . . . . . . . . . . 23
4.2, Spherical Inhomogeneity Problem . . . . . . . . . . 24
CHAPTER 5. DISCUSSION AND CONCLUSION . . . v ¢ v o o o« o o o 27
APPENDIX I. EVALUATION OF SOME INTEGRALS FOR THE THREE -LAYERED
PROBLEM &« v v v v v v o o v b o o o e e e e e e 29
APPENDIX IT. EVALUATION OF SOME VOLUME INTEGRALS FOR THE
SPHERICAL INHOMOGENEITY PROBLEM . . . . « « + « « & 31
REFERENCES  + v « v v v v v ot o o o o 0 o o o o o e e o e e e 36

iii



St iandd st oA de Sond

e A iy, SIS A AR R R R TR e

TABLE
1.
2.

LIST OF TABLES

Material Properties

The Value of Nf for the Threce-Layered Problem

iv

Page
22




LIST QF FIGURES

Bigure Page
1, Geometry and material properties of the three-layered
medium, 38

2. Geometyy and material properties of an elastic spherical

inhomogeneity in an infinite elastic medium. 39
3. Displacement amplitude as a function of a,d8 for the

three-layered problem, Ge in Al, with h=1.0, 40
4. Displacement amplitude as a function of ,6 for the

three-layered problem, Al in Ge, with h=1,0, 41
S, Displacement amplitude as a function of «,0 for the

three-layered problem, Re in Polythylene, with h=1,0. 42
6. Displacement amplitude as a function of a9 for the

three-layered problem, Mg in Stainless St%el, with h=1,0, 43
7. Displacement amplitude as a function of o8 for the

three-layered problem, Stainless Steel in"Mg, with h=1,0. a4
8, Stress amplitude as a function of a,8 for the three-

layered problem, Ge in Al, with h=170, 45
9. Stress amplitude as a function of a,§ for the three-

layered problem, Al in Ge, with h=1.0. 46
10. Stress amplitude as a function of «.§ for the three-

layered problem, Be in Palythylene, with h=l,0, 47
11, Stress amplitude as a function of a8 for the three-

layered problem, Mg in Stainless St&el, with h=1.0. 48
12, Stress amplitude as a function of & 8 for the three~

layered problem, Stainless Steel in™Mg, with h=l,0. 49
13. Displacement amplitude as a function of a16 for the

three-layered problem, Ge in Al, with £=170, 50
14, Displacement asmplitude as a function of a8 for the

three~layered problem, Al in Ge, with £=1,0, 51
15. Displacement amplitude as a function of alﬁ for the

three-layersd problem, Be in Polythylene, with f=1,0, 52
16. Displacement amplitude as a function of ®,8 for the '

three~layered problem, Mg in Stainless St&el, with £=1,0, 53
17. Displacement amplitude as a function of &8 for the

three-layered problem, Stainless Steel in'Mg, with £=1,0, 54

v




LIST OF FIGURES (Cont'd)

18, Stress amplitude as a function of N for the three-
layered problem, Ge in Al, with £=170. 55

19, Stress amplitude as a function of a,§ for the three-

layered problem, Al in Ge, with £=170. §6
20, Stress amplitude as a function of «,8§ for the three-

layered problem, Be in Polythylene, with £=1.0, 57
21, Stress amplitude as a function of a,d for the three-

layered problem, Mg in Stainless Steel, with £=1.0. 58
22, Stress amplitude as a function of a,§ for the three-

layered problem, Stainless Steel in"Mg, with £=1.0, 59
23. Displacement amplitude as a function of 49 for the

three-layered problem, Ge in Al 60
24, Displacement as a function of ayé for the three-layered

problem, Al in Ge 61
25, Displacement amplitude as a function of a.8 for the

three-layered problem, Be in Polythylene 62
26. Displacement amplitude as a function of o .8 for the .

three~layered problem, Mg in Stainless Steel 63

27. Displacement amplitude as a function of «,§ for the
three-layered problem, Stainless Steel in™Mg 64

28. Stress amplitude as a function of a,8 for the three-
layered problem, 3¢ in Al 65

29, Styess amplitude as a function of o8 for the three-
layered problem, Al in Ge 66

30, Stress amplitude as a function of «,d for the three- v
layered problem, Be in Polythylene 67

51. Stress amplitude as a function of a,6 for the three~
layered problem, Mg in Stainless Steel 68

32, Stress amplitude as a function of als for the three-
_ layered problem, Stainless Steel in"Mg 69

33. Scattering cross section as a function of «,a for the
spherical inhomogeneity problem, Ge in Al 70

34, Scattering cross section as a function of a.a for the
spherical inhomogeneity problem, Al in Ge 71

vi




LIST OF FIGURES (Cont'd) \

Figure Page
35, Scattering cross section as a function of a,a for the
spherical inhomogeneity problem, Mg in Stainless Steel 72

36, Scattering cross section as a function of & a for the
spherical inhomogeneity problem, Stainless éteel in Mg 73

37, Scattering cross section as a function of low “la for the

spherical inhomogeneity problem, Ge in Al 74
38, Scattering cross section as a function of low ¢ a for the
spherical inhomogeneity problem, Al in Ge 75
39, Scattering cross section as a function of low &.a for the
spherical inhomogeneity problem, Mg in Stainless Steel 76
40. Scattering cross section as a function of low % a for the
spherical inhomogeneity problem, Stainless Steei in Mg 77

41. Dispiacement amplitude at the point z/46=0.5 as a function
of uls for the three-layered problem, Stainless Steel in Mg 78

42, Stress amplitude at the point z/&0.5 as a function of ﬁlé
for the three-layered problem, Stainless Steel in Mg 79

43. Displacement amplitude at the point z/6=0.5 as a function

of £ for the three-layered problem at the wavenumber

u16=2.0 and h=l. 80
44. Displacement amplitude at the point z/&0.5 as a function

of f for the three-layered problem at the wavenumber
@) &10.0 and h=1.0. 81
45, Stress amplitude at the point z/6=0.5 as a function of £

for the three-layered problem at the wavenumber a16=2-0

and h=1.0. 82

46. Stress amplitude at the point z2/8=0.5 as a function of £
for the three-layered problem at the wavenumber a;¢<10.0
and h=1.0. 83

47. Displacement amplitude at the point z/&0.5 as a function
of h for the three-layered problem at the wavenumber

a16=2.0 and £=1.0. 84

48. Displacement amplitude at the point z/6=0.5 as a function
of h for the three-layered problem at the wavenumber
@, &10.0 and £=1.0. 85

vii




LIST OF FIGURES (Cont'd)
Figure Page
49, Stress amplitude at the point 2/6=0.5 as a function of

h for the three-layered problem at the wavenumber
a16u2.0 and £=1.0. 86

50. Stress amplitude at the point z/8=0,5 as a function of

h for the three-layered problem at the wavenumber
alﬁslo.o and f=1,0, 87

viii



CHAPTER 1

INTRODUCTION

The scattering of elastic waves by an inhomogeneity embedded in an
infinite homogeneous isotropic elastic medium has been studied by
numerous investigators. An "inhomogeneity'" is a region in which dif-
ferent material properties from its surrounding medium exist. Eshelby
[1,2] developed the method of equivalent inclusion to determine the
selastic field of an ellipsoidal inclusion., An "inclusion" is considered
to be a region which has the same geometric shape and dimension as the
inhomogeneity but the same material properties as its surrounding medium
after an eigenstrain is imposed within that region, Mal and Knopoff

{3] appeared to be the first in applying Eshelby's result to form the
scattering theory of a single sphere. Subsequently, Gubernatis [4]

also used Eshelby's result to study the long-wave scattering of elastic
waves for an ellipsoidal inhomogeneity. In the above studies Eghelby's
solution for the static displacements was used as the first approxima-
tion in the iteration.

Wheeler and Mura (5] first applied the concept of eigenstrain to
study composite materials, in which they considered the difference in
elastic moduli between the inhomogeneity and matrix. Subsequently,

Fu [6] presented a formulation for the elastodynamics field cf two
ellipsoidal inhomogeneities embedded in an infinite elastic medium sub-
jected to plane time-harmonic waves. He [7] later gave a complete

formulation in extending the method of equivalent inclusion to dynamic

1



elasticity and gave some results for three-layered and five-layered
media subjected to plane time-harmonic longitudinal waves. The scat-
tering of plane waves by an ellipsoidal inhomogeneity is presented in
(8,9].

The scattering of a plane compressional wave by a spherical inhomo-
geneity in an infinite elastic medium has been studied by Ying and
Truell [10] and by Pao and Mow [11]., They used the method of separation
of variables to solve the wave equation which describes the incident,
reflected (scattered) and refracted waves inside and outside the spheri-
cal inhomogeneity. Because the solutions are expressed by a spherical
coordinate and the inside and outside scattering field can match exactly
along the boundary of the spherical inhomogeneity, the results by this
method are considered as exact solutions. Some numerical results of
the elastic scattering cross section were shown by Johnson and Truell
[12], and some dynamical stress concentration factors around a spheri-
cal cavity were found by Pao and Mow [14].

This research is concerned with numerical calculations according
to the extended method of equivalent inclusion by Fu [6-9], and a com-
parison with the exact solutions. Two cases are studied here. %he
first case is concerned with the three-layered problem and the other
case is concerned with the spherical inhomogeneity problem. Results
by the direct integration method for the three-layered problem and the
method of separation of variables for the spherical inhomogeneity
problem are compared with those obtained by the extended method of

equivalent inclusion applied on the two cases.



CHAPTER 2
WAVE MOTION IN AN ELASTIC MEDIUM

2.1, Governing Equation

Consider the infinitesimal element of an elastic body with mass

density p in the absence of body forces, the equations of motion are

Tk " P U M
where a dot indicates a differentiation with respect to time while a
subscript comma indicates spatial differentiation,
If the elastic material is linear and homogeneous, the stress-

strain relation is
ojk = Cjkrssrs (2)

where C are the elastic constant.

jkrs
If the elastic material is isotropic, then the independent elastic

constants are reduced to two and

=)X3$ 8 + uf

5k Szs éjr $ + 8, 8§,.) (3)

Cjkrs ks js ~kr

where A,u are Lame's constants and 6jk are kronecker's delta,

Substituting eqs. (2.1.2)(2.1.3) into eqs. (2.1.1) the equations

of motion in terms of the displacements are obtained as follews:

B A (4)

or, in vector potation as:

o) W T e wwW=pd (5)
3 "



where V is the vector differential operator,

The displacement vector 0 can be decomposed as

UaVl{)+VK$,V'$’O. (6)

where the § and § are the scalar and vector displacement potentials,
respectively,
A substitution of eqs. (2,1.6) into eqs. (2.1.5) leads to

VL2172 - p 4] + 7 X[ 758 - 0 3] = 0 (7)

and the ¥ and 3 satisfy the wave equations

2

=1
V‘l’-vz (8)
L
2 1 ¢
v = 254 (9)
Vo
it which vi = (A+2u)/p and V% = y/p are the velocities of longitudinal

waves and shear waves, respectively.

2.2. Initlal and Boundary Conditions

In the above section the general wave equations in the absence of
body forces have been mentioned without considering external forces,
Usually the external force can be treated as an internal or surface
source (incident wave), or in the form of initial conditjons (impulses)
and boundary conditions (displacement or force or mixed boundary condi-
tions). Here the external force from sources, i.e. incident waves, will
be discussed.

If the incident waves are assumed to be plane waves, in general

they are composed of compressional and shear waves. When the incident



waves move in an elastic medium, the compressional and sheay waves will
propagate independently. But they can not travel independently if there
is an inhomogeneity in the elastic medium. When the incident waves im-
pinge on the inhomogeneity, compressional and shear waves will be re-
flected back into the matrix while the same types of waves will be re-
fracted into the inhomogeneity. Both the reflected and refracted waves
must satisfy the general wave equations. If the elastic¢ inhomogeneity
is bounded to the matrix at all times, then the tractions and displace-
ments must be continuous at the interface between the inhomogeneity and

matrix.

2.3, Time-harmonic Wave Problem

If the incident waves are time-harmonic, then the reflected and re-
fracted waves will also be time-harmonic waves of the same angular fre-
quency. Therefore, the displacement of all the waves can be represented
by

TE,t) = UE exp(-iut)e, )
where w is the angular frequency and gu is the unit vector in the direc-

tion of wave propagation.

The scalar and vector displacement potentials are

VE, 1) = (D) exp(-iut) 2)
$E,0) = ¢ expc-imé“d, (3)

. > . . . .
where e is the unit vector in the direction of shear wave.

¢
Substituting eqs. (2.3.2)(2.3.3) into eqs. (2.1.8)(2.1.9), the



p
/
/

6
wave equations sre reduced to
o n - "
(V5 + %) p(x) = 0 4
2 2 >
(V5 +8%) ¢(x) = 0 (5)

where uam/vL, an/vT ave the wavenumber of longitudinal and shear waves,

respectively,



CHAPTER 3
INHOMOGENEITY PROBLEMS

3.1, Transmission and reflection of waves in an infinite three-layered
medium '

A plane compressional incident wave which is simple harvmonic is
assumed to propagate in a three-layered medium, The geometry and ma-
terial properties of the medium are shown in Fig. 1, The displacement

of the incident wave is

T« U expliker - 1ut)E, W

where Uo is the amplitude and k, w are wavenumber and angular frequency,
. -* 4 . A & % %
respectively, ¢, is the unit vector in the positive direction of z-axis,
: I

i.e, plane wave propagation,

53,1.1. Integration of the governing differential equation

When the plane compressional incident wave impinges on the intex-
face between the elastic inhomogeneity (medium II) and its surrounding
medium (nedium I), a compressional wave is reflected back into the
medium I, while a compressional wave is transmitted into region III[13],
For convenience of the ensuing discussion, the displacements and stresses
associated with the incident, reflected, refracted and transmitted waves
will be designated by the superscript (L), (), (£) and (t)., Details
for incident compressional plane waves along the +z axis are given below.

The displacement of these waves are
@) LU exp(ia,z - iat) )
z o PURE - 2w

0l = pexpledagz - dut) )
2 7
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Uit) = B exp(ialz - dwt) (3)

U« 0t (2) exp-dut) )

where U , A, B ave the amplitude of the incident, reflected and trans-
” ” )

mitted waves, respectively, ul“ = m“/vi = plw‘/(A1+2u1), where the sub-

script 1 denotes the matrix,

The displacement funection Ucf)(z) shoulé satisfy the wave equation
2
(92 + 0,7 )U(z) = 0 (s)

L2 2,2 ; e 4 , .
where a, = W /vL = TX§:§E§T and the subscript 2 refers to the inhomo-
geneity,
For the simple case chosen, U(f)(z) are obtained as

U(f)(z) = Cc05a2: + Dsinagz (6)

where C, D are constants.

The stresses associated with the above displacements are

(1)

o, = la;(\j+2uy) Ug exp (Lo z - dwt) (7
52) = -iQI(A1+Ep1) A exp(-igy® - det) (8)
E:) = oy (\y+23;) B exp(iagz - iwt) (9)
§f) = 0, (\g*24,) (-Csina,z + Deosw,2) (10)

The stresses and displacements must be continuous at the inter-
face. Thus at z = - §/2 the continuity conditions are

y @4y 2y (11)

1 (T) gff) (12)

A
22 A

g
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and at z = §/2 the continuity conditions are
(t) |y |
Uz = Uz (13)
(t) _ ()
oz; =9, (14)
These continuity conditions give four simultaneous equations in
terms of four unknown coefficients A, B, C and D, Afier solving the
simultaneous equations, the unknowns A, B, C, D are found to be:
azé a26
_ COS—— sin~7—
AsUgexp(-day )1 - —55 T8 T ey a8 (15)
cos—— -ivfh sin——  sin—— +ivFh COS——
Q6 a26
Cos- sin
_ . 2 ST
B=U exp (-ia; 8) [—73 55 T Ty ol (16)
cos—— -ivfh sin——  sin—— +iV§E'cos—7~
a26 azé
C=U_exp(-ia,8/2) / (cos—— - i/fﬁ'sin—i—J (17
%,6 o, ¢
D=-U_exp(-ia;6/2) / (sin~%—-+ i%?ﬁ'cos—é-a (18)

= \l -
where f = (A2+2p2,/(xl+2p1) and h pz/p1 .

The displacements and stresses in the whole medium can be obtained

by using equations (1-4) and equations (7-10), respectively.

3.1.2., Extended Method of Equivalent Inclusion

The equations of motion for the inhomogeneity and the matrix are:

ij k= °1 ﬁj matrix (1

ij k= P2 ﬁj inhomogeneity (2)
5 ) .
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The stress-strain relations are:
ey ;
cjk = Cjkrs € matrix (3)
- (@ - -
°jk = Cjkrs €rs inhomogeneity (4)
where o Ccl) and Ccz) are mass density and the elastic constants
1’ “jkrs P2» “jkrs y

for the matrix and the inhomogeneity, respectively,
Replacing the inhomogeneity with an equivalent ineclusion which has
the same material properties as the surrounding matrix after an eigen-

strain is imposed in the inclusion, the governing equatigns are equations

(1,3) and
gjk,k =P Gj inclusion (5)
%k = C§i35 sis inclusion (6)
eis = s E;s 7
where s Ess’ E;s are the total strain, elastic strain and eigen-
strain, respectively.
The equivalence conditions derived and given in [7,9] are:
chkrs sgg) + C§i§s elgl) = - chkrs siz) inside the inclusion (8)
Ap G§m) + c§iis e;gfi) = - Ap Gga) inside the inclusion  (9)
where 2. = c§iis ] c§iis , 80 = p, - py and
Clias o,k * Clias Sesrk * s Sesrk 10)
u, = u, @ 4y, ™ (11)

3 j J
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where the superscripts '"m" and 'a" denote field that is induced by the

presence of mis-match and that is applied,

Bquations (3.1.2,5-3.1.2,11) are the general equations for the

equivalent inclusion with no restrictions on the geometric shape of the

inclusion, i.e, these equations can be applied to an inclusion of arbi-

trary geometry.

For the three-layered problem, the equivalence conditions are re-

duced to
1 A 2 E (9. [0]A_ + (1) 0JB.] + (A, + 2u.)JA_ = -4 w?H
[V} Baia nZo on (018, + o7 [0]B] 1 e, T meRw
" m 2 )
7 dow” ] (2 o1a_ @i Yl01B,] + (A) + 2u)A] = -bou’H;
n=o0

7 2
= dou? nzo (6™ [oja, + s ™ 018 ] + (A + 2uA = -bou’H,

and
m

%T(AA+2AU) nzo [@él)[O]An+¢§2)[0]Bn] + (A+2u)B = - (8A+280)E
m 3 "

1 (aw200) 1 (02 (018 +o{P (018 ] + (Ap+20))08 = -(8M200)E)

m 4 .
%T(ax+zau) n§o[¢£m+1)[O]Ah+¢£m+2)[o]sn} + (A+2u)B, = - (8M280)E

(12)
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)
where: 9 (z) = Zia fzé (z')neialia'z'idz'
| (k) i 2
k - .

¢n (z) dzk ¢n(“)
AN = AZ - Xl
AH = uz - ul

(1a)"
By = = Y

(idl)m*l
Em = m! Uo

12

The eqs. (3.1.2.12) and (3.1.2,13) give 2(m+l) simultaneous equa-

tions, having matrix dimensions of 2(m+1) x 2(m+l) if mairix represen-

tation is used,.

The displacement and strain fields inside and outside the equiva-

lent inclusion are:

Uz(z,t) = Uz(z) exp (-iwt)

U_(z) = rf[A (2) + B ¢! (z)] + U e %17
Z\%) neo n¢n z n¢n 2)] 0

azz(z,t) = azz(i) exp (-iwt)

m .
o : icyz
e,,(2) = nzo[An¢A(z) » B9l (z)] + dagUje 1

and the stress fields are:

czz(z,t) = dzz(z) exp (-iwt)

Gzzcz) (A + 21y) &,,(2) matrix

]

o__(z)

2z (A, + Zuz) ezz(z} , inclusion

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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Evaluation and integration of the ¢n-integrals are shown in

Appendix I,

3.2, Scattering of waves by a spherical inhomogeneity

A plane compressional incident wave which is simple harmonic is
assumed to move in the positive z-axis in an infinite elastic medium
where an elastic spherical inhomogeneity is embedded. The configuration
of the whole domain is shown in Fig. 2, The displacement of the inci-

dent wave is
B N R —)
= Uo exp(iaz - lwt)ez (1)

where U  is the amplitude and o, w are the compressional wavenumber
and angular frequency, respectively, and 32 is the unit vector in the
positive direction of the z-axis.

In this section two methods, the separation of variables ap-
proaches and the extended equivalent inclusion method, are used to
determine the displacements and stresses of the reflected (scattered)
waves. Then, two measurable physical quantities, differential scat-
tering cross section and the total scattering cross section far from
the inhomogeneity, will be expressed in terms of the scattered asymp-
totic values. The differential scattering cross section dP(w)/d@ [4]
is a measure of the fraction of incident power scattered into a parti-
cular direction, where dQ is the differential element of solid angle.
The total scattering cross section P(w) is the ratio of the average
power flux scattered into all directions to the average intensity of

the incident fields.
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3.2.1, Method of separation of variables

In this section, the work by Ying and . ruell [10] and that by
Pao and Mow [11] will be briefly introduced.

Wher & plane compressional incident wave impinges on the surface
of the elastic inhomogeneity, scattering occurs. Both compressional

and shear waves are reflected back into the matrix (Medium I) while

the same types of waves are refracted into the inhomogeneity (Medium II).

The potentials, displacements and stresses associated with the incident,
reflected and refracted waves are denoted hy the superscript (i), (r)

and (f). The wave equations in terms of potentials are

(% + o) v =0

(1)
(v + 8,2 ¢ = 0
@2+ B ) =0 |
@2+ 812) ¢(r) - 0 (2)
(0% + 0,2 v <0

(3)

(7% + 8,7 otF) =

{
o

2

) 2 2 2 2
waere ;% = pjw™/(Apr2uy) , 817 = pqwt/ug , ay” = pout/ (MH2u,),

2
- pzw /uz ’

™
N
i

The displacement of the incident wave is

(1) | PR
Uz = Uo exp(lal- iwt) (4)

E A AT

ol
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and the associated potential functions are
. U
(i) . o ;
P o= g, exp (ia,2) (5)
s =0 (6)
w(i) can further be represented in terms of a spherical coordinate
function
@ _ Y% * n .
v = == T (2ne1)i" (a7 P (cos®) (7)

1 n=0 v

where jn(x) are the spherical Bessel functions of the first kind, and
Pn(x) are Legendre polynomials.

Because of axisymmetry of this problem, displacements, stresses
and potential functions are independent of the spherical coordinate 9.
Therefore, after solving the wave equations, the potentials of the re-

flected wave are [12]:

p = T O™ atne)a b (og7)P (cos6) 8)
n=o0 .

s o 7 (™l a(2n+1)B_ h_(8,7)P (cos®) (%
n=o0

where h (x) are the spherical Hankel functions of the first kind.
For the refracted wave inside the inhomogeneity the potentials are

[12]:
(£

v I (2™ a(ane1)c j (a,r)P_(cos) (10)

n=o

55 2 nzg(-i)n*l a(2n+1)D_j_ (8,T)P_ (cose) (11)
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The resultant waves in the medium I and medium II are
RO INMC (12)
oy = 90 4 4P (13)
b, = 9E) (14)
4, = ¢ (15)

The general representation of displacements and stresses in terms

of the potential functions %, ¢ can be found in [15]:

oy 1 -
Up = 5=+ 3€(De¢? (16)
_ 13y 3 .
Uy = 7355 - 3509 (17)
o o Bl .22 1, Ly 38 8 18)
rr ~ M 2 T 9T rz 8 T 6'3r T ~
82_2¢° 1ap 1 cotd 5y
= 7 - e ity A foadiN ) e s raadun
9gg = 2H[ 7 VY *rrar 7 DY 7 36 (19)
T T
cotd 3 1 39
T BG(Dr¢) T Dear
= yd L3y 2 2, , 2239 2 2_py 2
Org = Maglyar " TT W f BTt Tar v b+ =5 Dg¥] (20)
T T T
2 2 D.
- B”-2a 1 3y  cotd 3y 8" cotb 8
Tap 2u(- 2 broar ! o2 09 * 2 T 55 Prl (21)
where D_ = 13 and D, = —}——-E—{sine 3_9 For the incident frield
" Yr T r 3r 8 = sin® 38§ 387 ’

b= ¢(i) s 9=0, a=a,, €=8,. For the reflected field, ¢ = w(r)’ ¢=¢(r)’

a=a;, $=8; . For the refracted field, ¢=¢cf), ¢=¢(f), a=a,, B8R

2.
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Consider the boundary conditions at r=a

(1) (x) _ ()

ur1 + U = U (22)
NONNMCRNTC) (23)
oD o oD &

R O * % (25)

Substituting eqs. (7-11) and eqs. (16-21) into the above continuity
equations will form four simultaneous equations. After solving these

equations, the unknowns An, B, C., Dn will be obtained. Thus, the

n’ n
elastic field inside and outside the inhomogeneity can be determined.
The total scattering cross section far from the inhomogeneity is
[12]:
P(w) = 4ma’ E (2n+l)[|An|2 + n(n+l) %% an|2} (26)
n=o

and P(w) can be normalized as

e 2 ! 2 .
P(w) = 4 § (2n+l)[|An| + n(n+l1) E—-anl ) (27)
n=o 1

3.2.2. Extended Method of Equivalent Inclusion

The eqs.(3.i.2.1 - 3.1.2.11) are general equations by this method
and can be applied to the inhomogeneity problem of arbitrary geometry

[7-9]. The equivalence conditions are recorded here as follows:

1

2 ‘
T dew” [£5[01A; + £, [01A 4.0 #F s [01By s + Foposp [01Bygqte ]

j

+As = o« prZH (1)

fom- e

TN
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1 2.
1T Aew £ {O]A.j + fsjk,p

s3,p [O]Ajk+...+Fskj’p[0]Bkj + Fska,p[o]Bka+"']

2 »
*Asp 2 -ApW Hsp (2)

TR RN I R R I I I

ET BA8 gy (4,5 (014, + dmmjk[O]Ajk+,..+Dmmjk[0]8jk+Dmmijk[O]Bijk+...]

+ 5T 280[dgy 5 [01A; + dgp gy [01A, o #D g1 (01853 #D gy [01B g+ -]

+ (AIG ) = -(Aké E + 2Ausst) (3)

2“‘1 st

Akést[dmmj’p[O]Aj+dmmjk’p[0]Ajk+. +0 ke, p [01B3xk* s i, o018y syt

1
* TTQA“[dstj,p[O]Aj+dstjk,p[0]Ajk+"'+Dstjk,p[O]Bjk+Dstjki,p[0]Bjki+‘"]

+ (A8

1 sthmp+2ulsstp) = -(AlsstE. + 20uE__ ) (4)

mmp stp

$ o
=0 otherwise
Hsp = 1an s=3 p=3
=0 otherwise
Emn = 1an m=3 n=3
=0 otherwise
- 2 - 2 me
anp - -U e m=3 n=3 p=3

=0 otherwise
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amo ey [F] = -(8) %0050 + ¥ 5o = 9 5]
2 o 2
dmpguE o [T = -8 "0 856 + ¥y 55 7 ¥, 55!
4m0. 0 F [r] = _[A oL 2 § + 2u.B 2¢ s
1 1 1 ,s kj }-11 1 ’k Sj
- 2u¥ g5t ¢ kgs!

2 > 2 2
4mp WTF g [F] = = [Ao 7Wy oOky * 2H1By 9 k8

- ¥y sks * Mg, kgs!
j

4ﬂplw2dmnj[;] = - B12[¢’,n6jm * ¢ nbn Y, gmn ¢,jmn]

4np1m2dmnjk[?] = - 812[¢k,n65m * b mSin * Y, imn " ¢k_,jmn]

4wp1wznmnjk[?] = 2“1[¢,kjmn-¢,kjmn]'u1812[¢,jn5km+¢,mj5kn]
- Alalzw,mndjk

2 > A 2
4mpyw D i (7] = 2 [ s ymn i 5mnd 7181 P, 10 5m 9k, mi 8]

- MY ¢k mn® ij

where the ¢- and Y-integrals and their derivatives are evaluated for a
sphere by using the method given in [8] and are listed in Appendix II.
(0], £55 5000, Fypgp pl0) dge; 001,

(0] are equal to zero. Then egs.

From Appendix II, fsjk[o] SJk

[0] and D

Dsty11 (015 dstyx,p stik,p

(3.2.2.1 - 3.2,2.4) can therefore be much simplified.
If one assumes a two term expansion in the eigenstrains, then

egs. (3.2.2.1) and eqs. (3.2.2.4) will form 21 simultaneous equations

while eqs. (3.2.2.2) and eqs. (3.2.2.3) will form another 15 simultaneous
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ions. The two sets of simultaneous equations are unc

Solving the two set simultaneous zquations for Aj, A

oupled,

ik’ Bjk and

Bjkz’ the displacements of the scattered wave can be written as [8,9]
¥ ; ¢ F F B, . Jexp(-i
Un(To8) = [EpsAy + Salip * FrpaBuge * FriyBglexp(-iut)

22 _ 2> > >
where 4wp1m fmj = - 81 ) ij + w,mj - ¢,mJ
amp w?f . = -8.% 5 .+ 5
™19 En5e = 7 B %my Y Yam " %4, mj
22 . a2 oy 820 s
4o Frgey = Mo ¥ péyy + 24870y 80,
2> 2 >
= 2% ks Y P19 iy
drp F = -[X w + 2u.8 2?
17 "mkjs 1 "4,m kj 171 "2, k mj
> >
- 2 ¥e,mky T 2%, mis!
where: exp (ia.R)
V[F] = [[f ———-§—1—-dV' T outside
9/
S exp(ia,R)
wk[?} = [[[ =} -—-E~l—- v T outside Q
Q
exp (ie,R)
$k2...s[¥] = fffﬂ XPXD L XL e 4V * outside @
> D >
w,k[r] = ggq: (r]

9 -

> >
w,kz.f.s[r] = axkax ...axs vir]

exp(ls R)
5[r] fff —R av! T outside @

. exp(iB,R) N , 7
$k[;] = fff Xt “———ifl—* av T outside Q
Q

20
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. exp (i8,R)
$kl S[;] = vr]f x}'(x;zlo [ Oxé "‘“‘“ﬁ"‘]"‘“—‘ dV' it OletSide 5‘3
LI B ) Q

> > 9 >

¥ [Tl = 5= o[r]

] < k

> -> 9 S o

¢ (r] = - ¢ [r]

yKL. oS axkaxg.,i X

As [?} =+ = the far field value of Um can be expressed as [9]:

expialr expif,r
Up = Cp —— *+ D Tr

and the associated far field stress are

expiulr
“mn T l'\J.‘:‘l T Ck2k6mn

expia, r

* iplfal T " CCmg'n * Cnlm)

expiﬂlr

* B1 T

Q
(D& + D 2]

where &k are direction cosines.

The differential scattering cross section is therefore [9]

2 o2
dptw) _ [ml %10
dQ Uo Bl U0

and the total scattering cross section is

. d 3
Plw) = [ L8l gq

and P(w) can be normalized as

P(w) = -35 / g%éﬂl de
Ta '

21

(6)

(7

(8)

(9)

(10)

Some important volume integral calculations are shown in Appendix II.



CHAPTER 4

COMPARISON OF COMPUTATIONAL RESULTS

In this chapter numerical results are presented and compared for
the three-layered and spherical inhomogeneity problems. Numerical
results were made known by Truell and his co-workers for a perfect
spherical inhomogeneity. In order to compare with these results, the

same material properties are uswid and listed in Table 1,

Table 1. Material Properties

Compressional shear wave

Material wave velocity velocity Mass density

(m/s) (m/s) (g/cm?)

Stainless Steel 5790 3100 7.90
Mg 5770 3050 1.74

Al 6568 3149 2.70

Ge 5285 3376 5.36
Polyethylene 1950 540 0.90
Be 12890 8880 1.87

When the extended equivalent inclusion meﬁhod is used, there are
complex matrices, with dimensions depending upon the dimensionless
wavenumber and the differences in elastic constant and mass density
between the inhomogeneity and the mat:ix, need to be solved. In some
cases, the dimension of the matrix are so large that the numerical
error can be relatively high. In order to get the best results, the
IMSL(International Mathematical and Statistical Libraries) subroutine

LEQ2C is used to solve matrices with double precision. The routine

applies iterative improvement until the solution is accurate to machine

22
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precision, If the matrix is too ill-conditioned to get effective itera-

tive improvement, a terminal error is produced,

4.1, Three-Layered Medium Problem

The input parameters for both methods are the dimensionless wave-
number alﬁ, the relative ratio of elastic constants £ and mass density
h, where £ is (A2+2u2)/(k1+2u1) and h is °2/p1‘ The displacement ampli-
tude Uo and the stress amplitude (kl+2p1)a1Uo given in the preceding
figures are nondimensionalized.

The calculation of the exact solutions is simple and the dimension
of the matrix is just 4x4, The calculation of the equivalent inclusion
method is relatively complicated. The solution is an infinite series
summation, and Nf(the accepted number of terms to get convergent results)
depends on «;6, £ and h. In the calculation of the displacements and
stresses from Eqs. (3.1.2,14 - 3.1,2,20), the summation is considered
to be acceptable until the ratio of the current term to the current
partial term is less than 0.5%.

In order to make detailed comparison, three cases are studied
here. The first case considers the difference in elastic constants,
i.e. f#1 and h=1. Fig. 3-7 and Fig. 8-12 display the displacement
amplitude and stress amplitude vs ¢y 98, respectively. The second case
considers the difference in mass density, i.e. f=1 and h#l. Fig. 13-17
and Fig. 18-22 display the displacement amplitude and stress amplitude
Vs alé. The last case considers the difference both in elastic
tonstants and mass density. Fig. 23-27 and Fig. 28-32 display the
displacement amplitude and stress amplitude vs a,8. From the results,

it is found that the extended method of equivalent inclusion gives
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excellent results which can be treated as the exact solutions. The
values of Nf in getting the convergent displacement and stress ampli-

tude in the third case are listed in Table 2.

Table 2, The Value of Nf'for the Three-Layered Problem

Ge in Al Al in Ge Polyethylene in Be Mg in St St in Mg

alé £=1.285 £=0.778 £=90.790Q £=0.219 £=4,572

h=1.985 h=0.504 h=2.078 h=0,220 h=4,540
0.5 6 4 6 6 6
1.0 6 6 6 6 8
2.0 8 6 6 8 8
4.0 12 8 8 10 12
6.0 16 10 8 14 14
8.0 18 14 8 16 18
10.0 22 16 10 20 20

*4.2. Spherical Inhomogeneity Problem

The input parameters are the dimensionless wave number ¢,a, the com-
pressional and shear wave velocity and the mass density of the inhomo-
geneity and the matrix.

For the method of separation of variables, the results of the scat-
tering cross section were plotted in Truell's paper but the specific
values for different ¢ a are not 1isted.f

For the equivalent inclusion method, there are two independent
series summation. The first one is to get the inside function value
in the eqs. (3.2.2.1 - 3.2.2.4), which are related to @2 and Bl/a1
only. The second one is to get the outside function value in the egs.

(3.2.2.5 - 3,2.2.10), which also depends on a,a and Bl/al.

1

From the three-layered problem, it is known that the value of Ng

+The data shown in this section are calculated from the computer program
kindly supplied by Dr. J. Gubernatis.
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depends on «.3, £ and h. This is also true for the current problem,

1
Besides, it is found that the value of Nf also depends on Bl/al. It
should be noted that the dimension of the matrix is proportional to the
value of Nf. Therefore, for large Nf, the dimension of the matrix will
be very large and the derivation and numerical computation to get the
scattering cross section is very lengthy and time-consuming. Instead
of finding the scattering cross section for large ¢ a, it is hoped to
find the accepted value in what range of oa when Nf=l. Later, the

result is called one-term solution when Ng is equal to 1. The eqs.

(3.2.2.1 - 3.2.2.4) are reduced to:

2 - 2
Apw [fsj[O]Aj + Fskj[O]Bkj] + A = ~dpwTH (1)

Akﬁst[dmmj[O)Aj + Dmmjk[O]Bjk] + 2Ap[dstj[0]Aj + Dstjk[O]Bjk]

+ (llésthm + ZulBst) = -(AA&StEmm + 2AuEst) (2)

From the formulas in Appendix II, it is found that Fskj[o] and
dstj[o] are equal to zero, which make the eqs. (4.2.2.1) and (4.2.2.2)
uncoupled, i.e. the difference in mass density and the difference in
elastic constants will have no coupled effects. After some manipula-
tion, it is found that the nonzero variables are AS’ Bll’ 822 and 833
with Byq equal to 822 by symmetry. For low @ a, the closed form
solutions of these variables can be obtained and the closed form of the
scattering cross section can also be obtained.

Fig. 33-36 display the scattering cross section vs ¢, from two

method. It is found if «,a is less than 1, the tendency of the one

1

term solution is good compared to the exact solution. For certain
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material system the one-term solution represents « good approximation
up to medium frequency range. The accuracy, however, is not good
enough to produce relative errors less than 1% though wya goes down to
0.01. The Fig, 37-40 display the comparison for the o,a between 0.0l
and 0.1. It is therefore necessary to take more terms in the series

for higher aja if this approach is to be used.



CHAPTER §

DISCUSSION AND CONCLUSTON

It is worth studying the numerical characteristics of the ex-
tended method of equivalent inclusion. By doing this, we will know
what kind of inclusion this method can be applied to, Because of the
simplicity and low computer time, the three-layered problem is chosen
first for studying. Fig. 41-50 display the displacement and stress
amplitude vs aiﬁ, f and h, respectively. In these figures, the curves
both for N(number of terms) = 6,12 and for the exact solution are
shown. From these figures, it is found Nf will increase while alé
or h increases or f decreases. Besides, the value of Nf for convergent
stress amplitude is larger than the value for convergent displacement
amplitude. It is also found that the displacement amplitude is less
than the exact solution and the stress amplitude is larger than the

exact solution at the larger «,8 if N is less than N_.

1 f

Though the acceptable numerical results of the equivalent inclusion
method in spherical inhomogeneity are not obtained in this study, the
one-term solution supplies a very good tendency at low wavenumber, It
is expected when the two-term solution (N=2) are applied, the accuracy
at low dimensionless wavenumber will be very good and it will also
supply good tendency in higher dimensionless wavenumber. And if Ng
is large enough for different inclusion, the value from this method

should be very close to the exact solution as in the three-layered

problem.



From the above study, it is found N. will be large as the o 38
(or ala) or h or 8;/a; is very large or f is very small. Therefore,
the dimension of the complex matrices will also be very large, which
will probably cause the numerical singularity (algorthmic singularity)
in high @ a range. The numerical singularity may he overcome after
some numerical improvement skills are applied or other numerical methods
are used. It is suggested that numerical scheme be carefully studied

for large h, Bl/aI or small £ at high wavenumber range,
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EVALUATICN OF SOME INTEGRALS FOR THE THREE-LAYERED PROBLEM

I.1, fh (z’)neia{z"z"dz'

(-l)neiazkn(ah) _ for z > h

H

n-r

R . . n
[(-1)"ei®? 4 e'laz]elahRn(ah) - YL+ -1)%] n}zr -
' T=0 (n-r)!(ia)r

for -h <z <h

e'laan(ah) for z <-h

ich ¥ ()%™ 7T
T+l

where: R (a¢h) = e
n r=0 (n-1)!(ia)

. n n-r
. (_l)ne-lah Z n! h

r=0 (n-r)! (ia)r+1

-

n+2 5/2 Lo 5 5
I.2. an+2¢n(z) = gfa~ f (zy)ﬂelaiz-z'ldz, Rt
-8/2 iad
n icuz, .~icz 5=
- i-2[(-1) e 5 +e o 2 Ly ()
§oLCDT  nl (en)?
2 . . m
m=o0 (n-m)! (icz)
ad
¢ nlk%_a

where: (e8) = -
tn m=o0 (n-m)! (- ggﬁom

k
1.3, an-k+2¢n(k)(z) e k2 d ¢_(2) -

azk

1 or
lA
~
‘A
nj o

K2 (_1)neiaz+(_1)ke-iaz 3%9
17 > e * In(ad)

B AR TIC LN U 5

o 2 (a-m-K)!(iaz)™*K

29

B e el e e e N I S LT N . L M -




ORIGINAL PAGE IS
OF POOR QUALITY

1.4. a“"“*%n(k) [0] 220
(1) both n and k are not odd integer
an'kﬂ"bn(k) (0] = k-2 o 2 L, (e3)

b
= 520 7 L (eh) -
in

(2) both n and k are odd integer

-k+2, (k k-2 72
PR ¢n( )[0] = -4 %e Ln(cﬁ)

iod
= k'zfe 2 n(ed) + E;ll-
i

(3) only one of n and k is odd integer

n-‘k+2¢n(k) [0] = 0

n 1aZ
1
T
1

rs. ™% ()

~igz
=——— R _(c§)
242 P

6 nk+2 (- ,/ kmz

p,(2) = ; 12 g ()
(- 1)k ~iaz R ()
21' n

ia8 0 31
=z f nlcz)‘

)

where Rn(qs ) =

mo (n-myi(- 2"
i o8
e z ri nt )
-(-1)"e i m

m=o0 (n-m)! (- )

for n<

for n >

for n <

for n >

k

k

k

k

e e g e gt

i Srsteibbespitan | |

L T S R

T TR T T T A
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APPENDIX II

EVALUATION OF SOME VOLUME INTEGRALS FOR
THE SPHERICAL INHOMOGENEITY PROBLEM

0}

Y'rom Ref, [6,8], we obtain:

Hd w(¥) ) fff = (;GR) v 7 inside @
Q .
E E n-2 ¢-1)" <& yk zn-l-k
nso 220 keo Xik!(n-i-k)1
/11 . exp 1ar' gy dy' dz!
- - 1
Q axt¥ ayrK g (A-A-K) T
o '!)n
= Z ( ' XX .., X
n=o nl "pq v

nth power of X

% m=1 2m 1

S B mm g § D (),m
[ méo (2m) | C Ly TR me1 (2m- l)! Spq...v ]

where: R = |T - T'|

2m-1
n),m _ 3 (r
Clgq?..v = ”f p(F") x'aacc' ) ax 4V
q v
2m-2
~(n),m _ fff *, 3% (x") dv!
3 = o(r') = -
Pq...Vv Q axﬁaxq..,ax'v
o(F1) = 1
1.2, Yy, s(?) = fff Xpxy X! EﬁRﬁiEBl dv! T inside @
. T (-1)n
= Z ¥ xpxq...xv

n=o
nth power of x

fF T e Ly f LT
e R M ¢ s p A

31
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2m=-1
) Cn) mo 3 (T ) 1
where: pq.. fff p(r ) 3x'at&...ax§ dv

aM(p1y2m-2
S, = 117, 06 i e

In what follows we develop these formula specially for a sphere of

radius a:

I1.3. C(n),m and S(n) m for p(r) . 1 and @ is sphere

Pq...v Pq.
) cl@™ = 4n %;2;3
(2) Céi)’m = 0 for m=0
= -0
S;i)’m = %E(Zm-Z)azm"lqu
(3) C;:&Qm = 0 for m=0,1
= (2m-1) (2m-3)2m aZm-z %E. P=q=u=v
= (2m-1) (2m-3)2m a2m-2 %% gzriiggc;go equal pairs
= 0 otherwise

3 41

5(4)’m (2m-2)(2m-4)(2m-1)azm' T P=g=u=v

pquv

u

2m-3 41 for any two equal pairs
15 of indices

i

(2m-2) (2m-4) (2m-1) a

= 0 otherwise

B S
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L),m _ A(B),m | (D,m _ .(3),m 33
o W BlmgWm B,
) P pqu P pqu
I1.4 C(n),m and S(n),m for p(;') = x! and Q@ is sphere
T pqu...v Pq...V i P
(1),m _ (2m-1) _2m+2 41
(1) C:p = Tmrz 2 3 6pi
(1),m _ 2m-2 2m+l 41
sp * Zmel @ 3 6pi
(2) Céi&’m = 0 for m=0
= (2m-1) (2m-3)a2m fsi_H_ p=q=u=i
_ 19 7 2 41 for any two equal pairs of
= (2m-1)(2n-3)a 15 indices
= 0 otherwise
Séé&’m = (2m-2) (2m-4)azm-l %I-I- P=q=u=i
_ _4y42m-1 41 for any two equal pairs of
= (2m-2) (2m-4)a 15  indices
= 0 otherwise
(3) C;i&;ﬁ = 0 for m=0,1
= (2m-1)(2m-3) (2m-5)2m a2™? . D
D = -47--I—I- i:p:q:u:v:w
AT i=p q=u=v=w P,q,u,v,w can change the
e {p=q isusv=w  order arbitrarily
- 4n i2p q=u V=
D= 108 1=p 4=U V=W

D= 0 otherwise
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