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ABSTRACT

24/

This work presents a general method for the synthesis of
any open-circuit transfer function, which is expressed as a
rational function with real coefficients. It is shown that
such functionspbe realized by using two distributed RC elements
(modified by active units if necessary), one negative impedance
converter and one lumped capacitor. The distributed RC element
used here is a three-layer-structure, a pure dielectric sandwiched

in between a perfect conductor and a resistive film.




I. Introduction
This paper presents a method to synthesize the open-circuit

transfer functior

» of a two-port network. The distributed RC
elements described in the previous papers [1]-[6] are used. It

is shown that any rational transfer function can be realized with
some active elements imbedded in two units of such distributed

RC elements and one lumped capacitor. The procedure is extremely
simple. The difference in the realizations for different functions
lies only in the curve cut on the conductor sheet of each distri-
buted RC element. This is quite different from the situation
confronted in the lumped RC active synthesis where the number of

elements may increase tremendously as the complexity of the transfer

function is increased.

II. Summary of Previous Works on Synthesis

Barker [5] first presented experimental data for an active
filter by using two units of such distributed elements coupled with
some lumped RC elements. He also claimed that any given rational
open—-circuit transfer function can be synthesized by a Yanagisawa's
configuration containing two networks A and B and an NIC (Fig. 1).
Each one of the networks A and B is in general composed of cascaded

distributed elements and some lumped RC elements. Obviously, his
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Fig. 1l.-— Yanagisawa's Configuration




method again suffers the drawback that the number of either dis-
tributed elements or lumped elements required will become very
large when the order of the given transfer function is high.
Before Barber, Heizer [3] has also discussed synthesis
method by two numerical examples. He realized a low-pass filter

with open-circuit transfer function

K(s?2 + 5.15)
(s + 0.695)(s2 + 0.54s + 1.151)

G(s) =

by starting with Yanagisawa's configuration and ending up with a
network composed of two distributed elements, one NIC, and two
lumped resistors and one capacitor. He also realized one biquard-
ratic functions

2
G(s) = K —S—*+ 1 (a > 2)

s?2 + as + 1

with a distributed element, a phase invertor and a resistor.

Later, Woo and Hove [6] have shown that a second order or
third order open-circuit transfer function can be synthesized by
two distributed elements (the special kind they call single pole
partitioned capacitance network) and an NIC and some lumped R, C
elements. They further tabulated some prototype networks corresponding
to these kinds of transfer functions and showed the advantages by

comparison with networks realized with all lumped RC elements.




IITI. Review of the Distributed RC Elements

Fig. 2 represents a unit of the distributed RC element con-
sidered as a two-port network. Its schematic diagram with both
normalized dimensions and coordinates is shown in Fig. 3. The

short-circuit parameters are [4]:

S'Cl %
yi1 = [—] tanh/R;C;s" (la)
M (2m+l) 8
s' 1m
fm=0 s' + (2m+l) <,
2 L 12 2
Cis ”24 Bim S %1 1‘2" Blm (1)
Y22 = = c
T m=0 2m+l 2 m=0 s' + (2m+l)2y,
2
where A, = Z%TET , S' is the complex frequency and R; is the total

resistance measured between x = 0 and x = 1 in the resistive film
and C; is the total capacitance between the resistive film and two
conducting plates when they are at the same potential. The Blm's

are the parameters which govern the variation of the capacitances

by a cut f; (x) on the conductor sheet, where

M
fi(x) = ) Blmsini—z-m%i)—f-E <1 (0 < x < 1) (2)

m=0
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Fig. 3 - A Schematic Diagram of a Distributed RC Element




Note that the distributed capacitance C;f; (x) are physically
realizable only if £;(x) is positive for 0 < x < 1.

In the synthesis procedure, we have to test this condition
after we find the Bm's. The test is, in general, a very tedious
work. Besides, it may have negative result and the whole problem
has to be started over again. However, if a negative impedance
converter is introduced, we may replace the cut fi(x) by |f;(x)]
and have a similar result. The proof is as follows:

Consider the basic differential equation (6) of [4] when

applied to the circuit of Figure 2.

d?v (x)

- y2v(x) = - y2f,(x)V, , (3)
dx?

where v(x) is the voltage at x on the resistive film with respect
to the ground and y2 = RjC;s' . Replace f,(x) by |[f;(x)]| and V,

by ¢(x), we have

d2v(x)

- Y2v(x) = - y2|£f,(x)]¢(x) . (4)
dx?

If we let ¢(x) = V, when £;(x) > 0 and ¢(x) = - V, when f, (x) < 0,
then (4) will have the same solution as (3).

This suggests that we can cut the conductor sheet according
to |£;(x)| and use an active unit connected to the distributed RC
elements. This active unit is composed of a current negative imped-

ance converter (INIC) and a voltage negative impedance converter (VNIC) .

(Fig.4).
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To find the short circuit parameters, by reference [4], we

know that y;;, y,; are still of the form (la) and (lb). But yj;;
will be changed. Consider the connection in Fig. 4 with port 1
shorted and (11) of [4]
+ - 1
Ip =Tz + I3 = [ [e(x) - vix)ls'Cy|f(x)]dx
1 1
= s‘Clvzfolfl(x)ldx - s'leov(x)fl(x)dx
12 2
= s'C1V2f1[ ? 8 sinizﬂiilizldx - i—fsizi ¥ Pim

0" p=o M 2 m=0 s' + (2m+1)%xr,

and
2
1 M s'2C; M By
ya2 = s'Cif | 1 BlmSin’(in'%mldx - ) = (1c’)

0 =0 m=0 s' + (2m+1)2x,
Compare (lc) and (lc'), the second summations of both are the same
but the first terms are different. Either the summation in (1lc)
or the integral in (lc') are constant and independent of s'. For
the convenience of calculation we let

1 M (2m+1)
— . X
K; = fo lmzo B, Sin——F———|dx (5)

which is exactly the first summation of (lc ) when f;(x) > 0 for
0 < x < 1., Further from this point on, we normalize the frequency
by Aj0r s = s'/X) and rewrite the equation in the normalized fre-

quency for the circuit in Fig. 4 as



_ _ /s n/s
Yi1 = Zthanh 5 (6a)

M (2m+l)Blm

Y21 = ~ g; ) S (6b)
I m=0 s + (2m+1)*
) 2
Y22 = it S st % “in (6c)
4R, 8R; m=0 s + (2m+1)?

This distributed element shall be called A; in the sequel.

Another unit (element) to be used is a distributed two-terminal
element formed by short-circuiting the terminals of port 1 of the
element shown in Fig. 2. This element shall be called element Aj

and it has admittance in the same form as (6c)

2
Wszs 2. o M B8
y = _ T1°s Z 2m (7)

4R, 8Ry, m=0 s + (2m+1l)?2

—

where s is the normalized complex frequency in the unit of

a2
4R5C»

Aoy = = X; and Ry is the total resistance measured between

x = 0 and x = 1 in the resistive film and C, is the total capaci-
tance between the resistive film and the coﬁductor plates when they
are at the same potential. The Bzm's are parameters which govern
the variation of the capacitances by a cut |f,(x)| on the conductor

sheet, where
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M
£2(x) = ] 8, sintZHLITX (8)
m=0
and
1 M .
k2 = |} 8, sindZFEL Xy g0 (9)
m=0

Iv. The Transfer Function

Suppose the given open-circuit transfer function is

ap + ays + ... + ay le
_ N(s) _ !

N
2
dg + dys + ... + szs

where N(s) and D(s) are polynomials with real coefficients in the
complex frequency s. Consider a two-port network which contains
elements A) and A2 and a lumped capacitor Cp as shown in Fig. 5.

The open-circuit transfer function of such a connection is

(s) vals) 21 (11)
G(s) = =
Vi) |1,(s) = 0 yap - (y + Cos)

where the yj;, y22 and y are defined in (6),(7),and Cyp is the
capacitance of the lumped element. One way to realize (10) by

(11) is to let

BT = - Y21 (12)
and

B (s) = ¥22 — Y — s(Cy (13)
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where B(s) is a polynomial having only negative real roots. Thus,
the necessary and sufficient condition for physical realizability
of G(s) is that both (12) and (13) are satisfied. The following
section will show that generally any G(s) can be realized by a net-
work shown in Fig. 5. This network contains a lumped capacitor,

a VNIC, and two distributed units modified by active elements. The

proof is stated in the following realization procedure.

V. The Realization Procedure

Knowing the conditions (12), (13) and the partial fraction
expansion form of (6), (7), we may choose a suitable polynominal
for B(s). This requires that N(s)/B(s) is a proper fraction and

the degree of D(s) is not greater than B(s). Let

M
B(s) = | | [s + (2m+1)?2] (14)
m=0

where M Nl if N1 > N2

M = Np_"l if Nl i N2

Expand both g%%% and gi:g in partial fractions as follows:
Ns) | § “m (15)
B(S)  poo s + (2m+1)2
and
D(s) ¥ km
B(s) ) + K (16)

m=0 s + (2m+l)2
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where k' = 0 if N; > Njp.

Substituting (6b), (6c) and (7) into (11) and simplifying

the result, we have

M (Zm+1)8

lm
= 2
G(s) = m=0 s + (2m+1) (17)
b 2 2
- M2 2 s M (2m+1)“(8y -pB, ) Co2R;
7(K1K2P) = ) 7By me8y) + 7 1 -
m=0 m=0 s + (2m+1)? ™
R1
where p = — . Let G1 and G2 be two positive constants. To realize
R2

G1N(s)
by (17); it is necessary that the following equations are
G2D(s)

satisfied:
G1hm = (2m+l)8lm m=20,1, ..., M (18)
Gok_ = = [(Gih )2 - p(2 +l)282 ] m=20, 1 M (19)
2%m < % 10 e (2m om =0, 1, ...,
and
.o s M 2 2 2CoRy
Gok' = 5 (K; - Kzp) - 7 m;g By, —PBy) = —= (20)

The two constants G; and G, and the ratio p are introduced to ensure

that the Blm's and the Bzm's are real numbers and that |f;(x)]| and
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| £, (x) | both have their value less than unity for all 0 < x < 1.

8 B8
In (18), since all h_'s are real, so are the —lﬂ's. After —lm's
m Gl Gl
are determined we may form
1 EY . (2m+l)wx _ 1
& L, RSt gy i)
and determine a value of G; such that
[£,(x)] < 1. (0 < x < 1) (21)

to fulfill the condition of normalization.

Rearrange (19), we have

2 4

p(2m+l)282m = (G1h )2 - = Gek, (m=20,1, ..., M) .
Among these (M+l) equations we can find a value for G, such that
the right side of all these equations are positive. Then we
obtained all the Vp BZm's, either of the two possible value

(positive and negative) can be taken arbitrarily. Again, we form

M
) BzmSiHLEE%ELEE = /5 £5(x)
m=0
and determined a value for Vp such that
[£.(x)| < 1 (0 < x < 1)

to fulfill the condition of normalization. After f;(x) and f,(x)
are determined, we can make cuts on the conductor sheets of A,

and A,.
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By aid of (5) and (9) we may calculate K; and K; and then
CgR; can be determined from (20). Here, we have a freedom to
decide the values of C; and R;. If CyR; is positive then according
to (11) the lumped capacitor C; is connected as in Fig. 5. If
CoR; is negative then the C; should be connected between terminal
2 and terminal 0 in Fig. 5 instead.

The above procedure shows that for any rational function G(s)
we can always find a f,(x) and a f,(x) and a Cy;. No matter how
complicated G(s) is, f,(x) and f,(x) are two single-valued curves
cut on A; and A, respectively, since they are summations of finite
terms of Fourier series.

It should be noted that the network shown in Fig. 5 is the
most general case for which both £, (x) and f,(x) are negative in
some subintervals of the interval 0 < x < 1. The number of NIC's
can be reduced for the following cases:

(1) £,(x) > 0 for all 0 < x < 1; f,(x) < 0 for some 0 < X

IA
'....l
-

then only three NIC's are needed (Fig. 6a).

(ii) £,(x) < 0 for some 0 < x < 1; £,(x) > 0 for all 0 < x < 1,
then only two NIC's are needed (Fig. 6b)

(1ii) £,(x) > 0 and £, (x) > 0 for all 0 < x < 1, only one NIC

is needed (Fig. 6cC).
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the Configuration in Fig. 5
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VI. Further Remarks

(i} In choosing A; and A, we require that both elements should
have the same A, that is A; = X2 , or RiC; = R2C»>, so that the
poles of y21, y22 and y can be made identical to cancel in the
transfer function.

(ii) In the previous section, we have chosen

=

B(s) = [ | [s + (2m+1)2] .
m=0
However, it is not hecessary to have the (M+1l) zeros of B(s) to
be - (2m+1)? consecutively, this is, m =0, 1, ..., M. The B(s)
may have any (M+l) zeros of the form - (2m+1)2 , where the m's

are any distinctive integers. For instance, if M = 3, we may

choose
B(s) = (s + 1)(s + 9)(s + 25)(s + 49)
or B(s) = (s + 1) (s + 25)(s + 49) (s + 121)
or B(s) = (s + 49)(s + 121) (s + 169) (s + 225)
etc.

Besides, the value for M given after (14) can be broadened as

M > N if Ny > N

and M>N -1 if N; < Ny




-18-

(iii) Though the above procedure is for the realization of open-

circuit transfer function, it can be applied te a transfer function

G' with a load Y, at the port 2 where

~Y21

Y22 — (Y + COS) + YL

Compare (21) with (11), if YL is a capacitance 1load, YL = CLs,

we can follow the exactly same procedure, just replacing Cp in
' = —
(11) by Cj = Cp cr, -

If YL is a conductive load, then we can proceed similar

formulation with slight modifications. One simplest way for all

(21)

kinds of Y_ is to use the same formula as the open-circuit transfer

L

function but connect an identical Y. to the left of the VNIC between

L
terminals 3 and 0 (Fig. 5).

VII. Examples
For the explanation of the synthesis procedure, we realize

third order and sixth order Butterworth low-pass filters. The

only difference between the two realizations is the cuts for the

two distributed RC elements in each case.

The third order Butterworth low-pass filter with 3db cut-off

frequency of 30X or s = 30 has the magnitude at s = jo

1

IG(Jw) | =
3 W y61%
(30)°[1 + (53) ]
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we find

-

G(s) = = .

s3 + 60s? + 1800s + 27000

According to (14), M = 3 for the present case, so we choose
B(s) = (s + 1)(s + 9) (s + 25)
Let N(s) = 1 and D(s) = s3 + 60s? + 1800s + 27000, then we have

N(s) _ .0052083333 _ .0078125000 + .0026041667

B(s) s + 1 s + 9 s + 25
and

D(s) _ 131.557292 _ 116.648437 + 10.0911458 + 1

B(s) s + 1 s + 9 s + 25

From (18), we determine Blm's as follows:

BlO = 0.0052083333 G
= -0.0026241657 G

Bll J.0026041l057 1

812 = 0.00052083333 G

The maximum value that the constant G; can assume is fixed by the
condition (21). Choose the maximum value Gj; = 120, then we have

810 = 0.625,8ll =-0.3125 and 812 = 0.0625. The next step is to

determine 82m's from (1?) by

2 (G 1hm) z2 -
pBZm =

4
w m
(2m+1) 2
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2
As all the PBom (m =0, 1, 2) have to be positive, the upper limit
of G2 is thus fixed. For simplicity, we choose this limit as G»

in this problem, that is

G2 = 2.332034608 x 10 3
and then we have
YoB,y = 0, /oB,; = 0.368972041
and /oB,, = 0.0520358451 .

The factor p is now used to scale the second curve

2
. (2m+1
[£2(x) | = |m£0 BZmSJ_n-(——m-z——-z—15 |

to be less than unity for all x. For this example we take
p = .16098092 arbitrarily which makes max [fz(x)l = 1 and 820 = 0,

821 = .91961543, 822 = .12969266 . Finally, from (20), we obtain

CoR; = .16436742

The two curves f;(x) and f,(x) are shown in Fig. 7.
Next, we realize

1

G(jw) =
6 w 21%
(30)%[1 + (55)1 ]

or

1

G(s)=
s64115.911099s546717.6914s4+246823.74s3+6045922.352+93887990s+729x106
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'3
£, (x)
= f,(x)
0 2 4 6 8 1

f,(x) for the third order Butterworth low-pass

filter
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By the same procedure described above, we determine the parameters

to be
G; = 3.9916800 x 107 G2 = 4.55647653 x 10°°
g = .395177065 CoR; = -.01184772
and
810 = .45117187 820 = .71700039
Bll =-.32265625 821 = .51262685
612 = .16113281 822 = .25649567
813 =~.05371094 623 = .08542315
814 = .0107421875 Boy = 0.
815 = - .0009765625 Byg = .01992741

The two curves to be cut on the conductors f;(x) and f,(x) are shown

in Fig. 8.

VIII. Conclusion

The rational short-circuit parameters of the class of distri-
buted RC elements used in this paper were pointed out early in 1962
[1] . No general synthesis of this kind of problem has to date been
studied and potentiality of this approach has been essentially
overlooked. Only recently, some very special functions were realized
with good experimental results [5], [6]. The present paper furnishes

a general method for the synthesis of any given open-circuit transfer
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Fig. g8 - f;(x) and f,(x) for the sixth order Butterworth low-pass filter
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function by using such distributed RC elements. Examples presented
are realized only theoretically due to the lack of facilities.
However, we believe that there should be no difficulty in manu-
facturing since two previous works have been carried out satis-
factorily at the Boeing Company [3], [4], and that its simplicity
in the synthesis procedure and compactness in physical structure
should merit practical interest.

The authors wish to thank Professor K.W. Heizer for many

helpful discussions.
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