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Abstract

Zero-shot learning has received increasing interest as a means to alleviate the of-
ten prohibitive expense of annotating training data for large scale recognition problems.
These methods have achieved great success via learning intermediate semantic represen-
tations in the form of attributes and more recently, semantic word vectors. However,
they have thus far been constrained to the single-label case, in contrast to the growing
popularity and importance of more realistic multi-label data. In this paper, for the first
time, we investigate and formalise a general framework for multi-label zero-shot learn-
ing, addressing the unique challenge therein: how to exploit multi-label correlation at test
time with no training data for those classes? In particular, we propose (1) a multi-output
deep regression model to project an image into a semantic word space, which explicitly
exploits the correlations in the intermediate semantic layer of word vectors; (2) a novel
zero-shot learning algorithm for multi-label data that exploits the unique composition-
ality property of semantic word vector representations; and (3) a transductive learning
strategy to enable the regression model learned from seen classes to generalise well to
unseen classes. Our zero-shot learning experiments on a number of standard multi-label
datasets demonstrate that our method outperforms a variety of baselines.

1 Introduction

There are around 30,000 human-distinguishable basic object classes [1] and many more sub-
ordinate ones. A major barrier to progress in visual recognition is thus collecting training
data for many classes. Zero-shot learning (ZSL) strategies have therefore gained increasing
interest as a route to side-step this prohibitive cost, as well as enabling potential new cate-
gories emerging over time to be represented and recognised. To classify instances from a
class with no examples, ZSL exploits knowledge transferred from a set of seen (auxiliary)
classes to unseen (test) classes, typically via an intermediate semantic representation such as
attributes. This has recently been explored at large scale on ImageNet [7, 28].

Prior zero-shot learning methods have assumed that class labels on each instance are mu-
tually exclusive, i.e., multi-class single label classification. Nevertheless many real-world
data are intrinsically multi-label. For example, an image on Flickr often contains multiple
objects with cluttered background, thus requiring more than one label to describe its content.
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There is an even more acute need for zero-shot learning in the case of multi-label classifica-
tion. This is because different labels are often correlated (e.g. cows often appear on grass).
In order to better predict these labels given an image, the label correlation must be modelled.
However, for n labels, there are 2n possible multi-label combinations and to collect suffi-
cient training samples for each combination to learn the correlations of labels is infeasible.
It is thus surprising to note that there is little if any existing work on multi-label zero-shot
learning. Is it because there is a trivial extension of existing single label ZSL approaches
to this new problem? By assuming each label is independent from one another, it is indeed
possible to decompose a multi-label ZSL problem into multiple single label ZSL problems
and solve them using existing single label ZSL methods. However this does not exploit label
correlation, and we demonstrate in this work that this naive extension leads to very poor
label prediction for unseen classes. Any attempt to model this correlation, in particular for
the unseen classes with zero-shot, is extremely challenging.

In this paper, a novel framework for multi-label zero-shot learning is proposed. Our
framework is based on transfer learning – given a training/auxiliary dataset containing la-
belled images, and a test/target dataset with a set of unseen labels/classes (i.e. none of the
labels appear in the training set), we aim to learn a multi-label classification model from the
training set and generalise/transfer it to the test set with unseen labels. This knowledge trans-
fer is achieved using an intermediate semantic representation in the form of the skip-gram
word vectors [22, 23] learned from linguistic knowledge bases. This representation is shared
between the training and test classes, thus making the transfer possible.

More specifically, our framework has two main components: multi-output deep regres-
sion (Mul-DR) and zero-shot multi-label prediction (ZS-MLP). Mul-DR is a 9 layer neural
network that exploits the widely used convolutional neural network (CNN) layers [27], and
includes two multi-output regression layers as the final layers. It learns from auxiliary data
the explicit and direct mapping from raw image pixels to a linguistic representation defined
by the skip-gram language model [22, 23]. With Mul-DR, each test image is now projected
into the semantic word space where the unseen labels and their combinations can be repre-
sented as data points without the need to collect any visual data. ZS-MLP aims to address
the multi-label ZSL problem in this semantic word space. Specifically, we note that in this
space any label combination can be synthesised. We thus exhaustively synthesise the power
set of all possible prototypes (i.e., combinations of multi-labels) to be treated as if they were
a set of labelled instances in the space. With this synthetic dataset, we are able to extend
conventional multi-label algorithms [13, 17, 32, 34], to propose two new multi-label algo-
rithms – direct multi-label zero-shot prediction (DMP) and transductive multi-label zero-shot
prediction (TraMP). However, since Mul-DR is learned using the auxiliary classes/labels, it
may not generalise well to the unseen classes/labels. To overcome this problem, we further
exploit self-training to adapt the Mul-DR to the test classes to improve its generalisation
capability.

2 Related Work
Multi-label classification Multi-label classification has been widely studied – for a review
of the field please see [32, 34]. Most previous studies assume plenty of training data. Re-
cently efforts have been made to relax this assumption. Kong et al. [17] studied transductive
multi-label learning with a small set of training instances. Hariharan et al. [13] explored
the label correlations of auxiliary data via a multi-label max-margin formulation and bet-
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ter incorporated such label correlations as prior for multi-class zero-shot learning problem.
However, none of them addresses the multi-label zero-shot learning problem tackled in this
work.
Zero-shot learning Multi-class single label zero-shot learning has now been widely stud-
ied using attribute-based intermediate semantic layers [3, 6, 10, 11, 19, 25] or data-driven
[8, 9, 21, 30] representations. However attribute-based strategies have limited ability to scale
to many classes because the attribute ontology has to be manually defined. To address this
limitation, Socher et al. [31] first employed a linguistic model [15] as the intermediate se-
mantic representation. However, this does not model the syntactic and semantic regularities
in language [23] which allows vector-oriented reasoning. Such a reasoning is critical for
our ZS-MLP to synthesise label combination prototypes in the semantic word space. For
example, Vec(“Moscow”) should be much closer to Vec(“Russia”) +Vec(“capital”) than
Vec(“Russia”) or Vec(“capital”) only. For this purpose, we employ the skip-gram language
model to learn the word space, which has shown to be able to capture such syntactic regu-
larities [22, 23]. Frome et al. [7] also used the skip-gram language model. They learned
a visual-semantic embedding model – DeViSE model for single label zero-shot learning
by projecting both visual and semantic information of auxiliary data into a common space.
However there are a number of fundamental differences between their work and ours: (1)
Comparing the DeViSE model with our Mul-DR, the learning of the mapping between im-
ages and the semantic word space by Mul-DR is more explicit and direct. We show in our
experiments that this leads to better projections and thus better classification performance.
(2) Our Mul-DR can generalise better to the unseen test classes thanks to our self-training
based transductive learning strategy. (3) Most critically, we address the multi-label ZSL
problem whilst they only focused on the single label ZSL problem. Additionally, zero-shot
learning can be taken as the generalisation of class-incremental learning (C-IL) [4, 35] or
life-long learning [26].
Our Contributions Overall, we make following contributions: (1) As far as we know this
is the first work that addresses the multi-label zero-shot learning problem. (2) Our multi-
output deep regression framework exploits correlations across dimensions while learning the
direct mapping from images to intermediate skip-gram linguistic word space. (3) Within the
linguistic space, two algorithms are proposed for multi-label ZSL. (4) We propose a simple
self-training strategy to make the deep regression model generalise better to the unseen test
classes. (5) Experimental results on benchmark multi-label datasets show the efficacy of our
framework for multi-label ZSL over a variety of baselines.

3 Methodology

3.1 Problem setup

Suppose we have two datasets – source/auxiliary and target/test. The auxiliary dataset S =
{XS,YS,LS,WS} has nS training instances and test dataset T = {XT ,YT ,LT ,WT} has nT test
instances. We use S = {1, · · · ,nS} and U = {nS +1, · · · ,nT +nS} to denote the index set
for instances in auxiliary and test dataset. XS =

{
x1, · · · ,xnS

}
and XT =

{
xnS+1, · · · ,xnS+nT

}
are the raw image data of all auxiliary and test instances respectively. YS =

[
y1, · · · ,ynS

]
and

YT =
[
ynS+1, · · · ,ynS+nT

]
are the intermediate semantic representations of each auxiliary and

test instance – in our case yi is a 100 dimensional continuous word vector for instance i in
the skip-gram language model [23] space. Ls =

[
l1, · · · , lnS

]
and LT =

[
lnS+1, · · · , lnS+nT

]
are

the label vectors for auxiliary and test dataset to be predicted respectively.

Citation
Citation
{Chen, Gong, Xiang, and Loy} 2013

Citation
Citation
{Ferrari and Zisserman} 2007

Citation
Citation
{Fu, Hospedales, Xiang, Fu, and Gong} 2014{}

Citation
Citation
{Fu, Hospedales, Xiang, Gong, and Yao} 2014{}

Citation
Citation
{Lampert, Nickisch, and Harmeling} 2009

Citation
Citation
{Palatucci, Hinton, Pomerleau, and Mitchell} 2009

Citation
Citation
{Fu, Hospedales, Xiang, and Gong} 2012

Citation
Citation
{Fu, Hospedales, Xiang, and Gong} 2013

Citation
Citation
{Layne, Hospedales, and Gong} 2014

Citation
Citation
{Sharmanska, Quadrianto, and Lampert} 2012

Citation
Citation
{Socher, Ganjoo, Sridhar, Bastani, Manning, and Ng} 2013

Citation
Citation
{Huang, Socher, Manning, and Ng} 2012

Citation
Citation
{Mikolov, Sutskever, Chen, Corrado, and Dean} 2013{}

Citation
Citation
{Mikolov, Chen, Corrado, and Dean} 2013{}

Citation
Citation
{Mikolov, Sutskever, Chen, Corrado, and Dean} 2013{}

Citation
Citation
{Frome, Corrado, Shlens, Bengio, Dean, Ranzato, and Mikolov} 2013

Citation
Citation
{Da, Yu, and Zhou} 2014

Citation
Citation
{Zhou and Chen} 2002

Citation
Citation
{Pentina and Lampert} 2014

Citation
Citation
{Mikolov, Sutskever, Chen, Corrado, and Dean} 2013{}



4 FU ET AL: TRANSDUCTIVE MULTI-LABEL ZERO-SHOT LEARNING

The possible textual labels for each instance in LS and LT are denotedWS =
{

w1, · · · ,wmS

}
and WT =

{
wmS+1, · · · ,wmS+mT

}
respectively, where mS and mT are the total number of

classes/labels in each dataset. Given a label-space of mT binary labels, an instance xi can
be tagged with any of the 2mT possible label subsets, li ∈ {0,1}2mT , where li j = 1 means
instance i has label j, and li j = 0 means otherwise. Denoting the power sets of textual labels
WS andWT as P (WS) and P (WT ), for multi-label classification we need to find the opti-
mal class label set column vector li for the i− th test instance in the power set space P (WT ).
At training time XS,YS,LS,WS are all observed. At test time only new class namesWT and
images XT are given, their representation YT and multi-label vectors LT are to be predicted.

3.2 Learning a semantic word space
The semantic representations YS and YT are the projection of each instance into a linguistic
word vector space V . The semantic word vector space is learned by using the state-of-the-art
skip-gram language model [22, 23] on all English Wikipedia articles1. The space V rep-
resents almost all available English vocabulary and thus is potentially much more effective
than human annotators to measure subtle similarities and differences between any two tex-
tual labels. Furthermore, V encodes the syntactic and semantic regularities in language [23]
which allows vector-oriented reasoning by its ‘compositionality’ property. This property
enables the critical capability of synthesising the exhaustive set of test label combinations
P (WT ). Note that cosine distance is used in the space V because of its robustness against
noise [22, 23]. We use v :W → V to represent the skip-gram projection from textual con-
cepts (words) in W to vectors in V . Such a semantic space thus captures the correlations
between labels without any need to collect visual examples – the meaning of multiple labels
for one instance can be inferred by the sum of the word vector projections of its individual
labels. Formally, we have

YS = v(WS) ·LS, YT = v(WT ) ·LT (1)

where v(WS) and v(WT ) are the word vector projections of the label class sets in the auxil-
iary and test datasets respectively. The next section discusses how to learn a predictive model
for YT given visual data XT .

3.3 Multi-output deep regression
We design a multi-output deep regression (Mul-DR) model f : X →V to predict the seman-
tic representation YT ∈ V from images XT ∈ X where X is the space of raw image pixel
intensity values. Our Mul-DR is inspired by the recent success of the deep convolutional
neural network (CNN) features [18, 29] as well as the importance of modelling correlations
within the semantic representation. The Mul-DR model is a neural network composed of
nine layers: Layer 1− 5 are convolutional layers; Layer 6− 8 are fully connected layers;
Layer 9 is the linear mapping layer with 100 least square regressors.

Two key components contribute to the effectiveness of Mul-DR. The first component
(layers 1-7) provides state-of-the-art feature extraction for many computer vision tasks [27].
It directly maps the raw image to the powerful CNN features2, avoiding the pitful of bad

1Only articles are used without any user talk/discussion. To 13 Feb. 2014, it includes 2.9 billion words and 4.33
million vocabulary (single and bi/tri-gram words).

2However, it has more than 148.3 millions parameters and thus to prevent overfitting on small auxiliary dataset,
ImageNet with 1.2 million labelled instances are used to train this component [29].
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performance due to “wrong selection” of features for a given dataset. The second component
(layers 8-9) provides the multi-output neural network (NN) regressors. Different from [18,
29], where the 8-th layer is an output layer for classification, the 8-th layer in our model
is a fully connected layer of 1024 neurons with Rectified Linear Units (ReLUs) activation
functions. This soft-thresholding non-linearity has better properties for generalisation than
the widely used tanh activation units. Such a fully connected layer helps explore correlations
among the different dimensions in the semantic word space. The final (9-th) layer of least
square regressors provide an estimation of the 100 dimensional semantic representation in
the space V .

To apply this neural network, we resize all images XS and XT to 231× 231 pixels. The
parameters of the first components are pre-trained using ImageNet [29] while the parameters
of the second component are trained by gradient descendent with auxiliary data XS and YS. At
test time, Mul-DR predicts the semantic word vector ŷi for each unseen image xi ∈ XT , i∈U .
Here the hat operator indicates the variable is estimated.

3.4 Zero-shot multi-label prediction
Given the estimated semantic representation ŶT , we need to infer the labels L̂T of the test set.
A straightforward solution is to decompose the multi-label classification problem into mul-
tiple independent binary classification problems which is equivalent [14] to directly solving
Eq (1) by:

L̂T =
[
[v(WT )]

T v(WT )
]†

[v(WT )]
T · ŶT (2)

where † is the Moore-Penrose pseudo-inverse. Eq (2) directly predicts the labels of each
instance by a linear transformation of the intermediate representation ŶT . In a way, this
can be considered as an extension of the ‘Direct Attribute Prediction (DAP)’ [19] to the
case of multi-label and continuous representation. We thus term this method exDAP. How-
ever, this does not exploit the multi-label correlations and thus has very limited expressive
power [5, 33]. Hence we propose two more principled multi-label zero-shot algorithms –
Direct Multi-label zero-shot Prediction (DMP) and Transductive Multi-label zero-shot Pre-
diction(TraMP).
Direct Multi-label zero-shot Prediction (DMP) Thanks to the compositionality property
of V , label-correlation can be explored by synthesising the representation of every possible
multi-label annotations in V: that is the power set of label vector matrix P = v(P (WT ))
where P = [p1, · · · ,p2mT ]. Thus Eq (2) is replaced by a nearest neighbour (NN) classifier
using all the synthesised instances as training data. The label set li of instance i ∈ U with
representation ŷi = f (xi) is then assigned as pa ∈ v(P(WT )), where a is the index computed
by

a = argmin
j
‖ ŷi−p j ‖ (3)

where ‖ · ‖ refers to the cosine distance.
Transductive Multi-label zero-shot Prediction (TraMP) DMP can explore label corre-
lations but only insofar as encoded by the compositionality of the prototypes in V . It would
be more desirable if the manifold structure of ŶT given test instances XT could be used to
improve multi-label zero-shot learning, i.e. via transductive learning. We therefore propose
TramMP, which can be viewed as an extension the TRAM model in [17] for zero-shot learn-
ing, or a semi-supervised generalisation of Eq (3). The key idea is to use the power set
of prototypes P as a known label set and to perform transductive label propagation from P
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to the inferred semantic representations ŶT . We denote the index of the power set proto-
types as L = {nS +nT +1, · · · ,nS +nT +2mT } and its corresponding class label set as LP.
Specifically, we define a k-nearest neighbour (kNN) graph among the test instances ŶT and
prototypes P. For any two instances i and z, where i,z ∈ {U ,L},

ωiz =

{
1
Zi

exp
(
− ‖ŷi−ŷz‖2

2σ2

)
, i f z ∈ NNk

(
ŷi,
[
ŶT ,P

])
0 otherwise

(4)

where σ ≈ median
i,z=1,··· ,|{U ,L}|

‖ ŷi− ŷz ‖2. NNk
(
ŷi,
[
ŶT ,P

])
indicates the index set of k-nearest

neighbors of ŷi from
[
ŶT ,P

]
. Zi = ∑z∈NNk(ŷi,[ŶT ,P]) exp

(
− ‖ŷi−ŷz‖2

2σ2

)
is the normalisation

term to make sure ∑z ωiz = 1. We define A = I−ω and partition the matrix A into blocks,

A =

[
ALL ALU
AUL AUU

]
and the label set of test instances can be inferred by the following

closed form solution [17],
L̂T =−A−1

UUAULLP. (5)

3.5 Generalisation of multi-output deep regression

As described above, our framework consists of two key steps: applying the multi-output
deep regression (Mul-DR) model to obtain the estimated semantic representation ŶT , and
followed by applying either DMP or TraMP to predict LT . There is however an unsolved
issue, that is, our Mul-DR is learned from the auxiliary data with a different set of labels
from the target/test data. This projection model is thus not guaranteed to accurately project a
test image to be near its ground truth label vector in the semantic word space. For example,
if our Mul-DR is learned to project images of cat and dog to the word vector representation
of “cat" and “dog" (v(“cat”) and v(“dog”)), it may not accurately project an image with
a person and a chair to its word vector representation of v(“person”) + v(“chair”) when
both labels were not available for learning the Mul-DR model. Any regression model will
have such a generalisation problem especially when the test data are distributed differently
from the auxiliary data. To make the Mul-DR model generalise better to the target domain,
we transductively exploit the predicted semantic representation ŶT to update the power set of
label vector matrix P. In this way the target data would be better aligned with the synthesised
label combination vectors in the semantic word space, thus helping generalise the Mul-DR to
the target domain. This can be viewed as a semi-supervised learning (SSL) method starting
from one instance for each label combination if the synthesised prototypes themselves are
treated as instances. We therefore take a simple SSL strategy and perform one step of self-
training [9] to refine each prototype of P,

pi =
1
k ∑

ŷT∈NNk(pi,ŶT )

ŷT (6)

where P̄ = [p̄1, · · · , p̄2mT ] is the updated prototype matrix and k is the number of nearest
neighbour3 selected. We use the updated label vector matrix P̄ to compute DMP (Eq (3))
and TramMP (Eqs (4) and (5)) in our framework.

3Note that k is not necessarily with the same k value in Eq (4).
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4 Experiments
Datasets Two popular multi-label datasets – Natural Scene [33] and IAPRTC-12 [12] are
used to evaluate our framework. Natural Scene consists of 2000 natural scene images where
each image can be labelled as any combinations of desert, mountains, sea, sunset and trees
and over 22% of the whole dataset is multi-labelled. For multi-label zero-shot learning
on Natural Scene, we use a multi-class single label dataset – Scene dataset [24] (totally
2688 images) as the auxiliary dataset which have been labelled with a non-overlapping set
of labels such as street, coast and highway. IAPRTC-12 consists of 20000 images and a
total of 275 different labels. The labels are hierarchically organised into 6 main branches:
humans, animals, food, landscape-nature, man-made and other. Our experiments consider
the subset of landscape-nature branch (around 9500 images) and use the top 8 most frequent
labels from this branch with over 30% of multi-label test images. For zero-shot classification
on this dataset, we employ both Scene and Natural Scene as the auxiliary dataset.

4.1 Experimental setup
Evaluation metrics (a) Hamming Loss: it measures the percentage of mismatches be-
tween estimated and ground-truth labels; (b) MicroF1 [16]: it evaluates both micro aver-
age of Precision (Micro-Precision) and micro average of Recall (Micro-Recall) with equal
importance; (c) Ranking Loss: given the ranked list of predicted labels, it measures the
number of label pairs that are incorrectly ordered by comparing their confidence scores with
the ground-truth labels; (d) Average precision: given a ranked list of classes, it measures
the area under precision-recall curve. These four criteria evaluate very different aspects of
multi-label classification performance. Usually very few algorithms can achieve the best per-
formance on all metrics. High values are preferred for MicroF1 and AP and vice-versa for
Ranking and Hamming loss. For ease of interpretation we present 1−MicroF1 and 1−AP;
so smaller values for all metrics are preferred.
Competitors Our full framework includes two main novel components: Mul-DR and
DMP/TraMP. To evaluate the effectiveness of these two components, we define several com-
petitors by replacing each component with possible alternatives. (1) SVR+exDAP: Support
Vector Regression (SVR)4 [2] is used to learn f :X →V and infer the representation of each
test instance. Using exDAP (Eq (2)) is a straightforward generalisation of [19, 20] to multi-
label zero-shot learning. (2) SVR+DMP: SVR replaces Mul-DR and we further use DMP
(Eq (3)) for classification; thus it serves as a reference to compare DMP with exDAP. (3)
DeViSE+DMP: We use DeViSE [7] to learn the visual-semantic embedding into which the
power set P is projected. And we use Eq (3) for final labelling in the embedding space, i.e.,
DMP. Thus it corresponds to the extension of [7] to multi-label zero-shot learning problems.
(4) Mul-DR+exDAP: Our Mul-DR is used to learn the visual-semantic embedding, with ex-
DAP for multi-label classification; thus it can be used to compare Multi-DR with SVR. (5)
Mul-DR+DMP/TraMP: Our method with either of the two proposed ZSL algorithms used.
For fair comparison, all results use self-training strategy in Eq (6) to update the prototypes.

4.2 Results
Our Mul-DR model vs. alternatives The results obtained by various competitors on Natural-
Scene and IAPRTC-12 are shown in Fig. 1. We first compare our Mul-DR with the alter-

4For fair comparison, we use the CNN features output by the first component (Layer 1-7) of our Mul-DR
framework as the low-level feature for linear SVR used with the cost parameter set to 10.
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Figure 1: Comparing different zero-shot multi-label classification methods on Natural Scene
and IAPRTC-12.

native SVR and DeViSE model for learning the projection from raw images to the semantic
word space. It is evident that our Mul-DR significantly improve the results on conventional
SVR [19, 20] regression model (Mul-DR+DMP>SVR+DMP, Mul-DR+exDAP>SVR+exDAP).
This is because that SVR treats each of the 100 semantic word space dimensions indepen-
dently, whilst our multi-output regression model, as well as the DeViSE model [7] capture
the correlations between different dimensions. Comparing to the DeViSE model [7] (Mul-
DR+DMP vs. DeViSE+DMP), our regression model is also clearly better using three of the
four evaluation metrics, suggesting that direct and explicit mapping between the image space
and the semantic word space is a better strategy. The only case where a better result is ob-
tained by DeViSE+DMP is on the IAPCTC-12 dataset with Hamming Loss. But this result
is worth further discussion. In particular, we note that Hamming Loss treats the false alarm
and missing prediction errors equally. However, for multi-label classification problem, the
distribution of labels is very unbalanced and each image usually has only a small portion of
labels compared to the whole label set. This is particularly the case for IAPCTC-12. The
good result of DeViSE on IAPCTC-12 with better Hamming loss but worse MicroF1 and
Ranking Loss is an indication that it is mostly predicting no label, and biased against making
any predictions. This explains the qualitative results of DeViSE shown in Table 1.
Our DMP/TraMP vs. exDAP Given the same regression model, we compared our DAP
against the alternative exDAP. The results (SVR+DMP>SVR+exDAP, Mul-DR+DMP>Mul-
DR+exDAP) show that our algorithm, which is based on synthesising the label combinations
in order to encode the multi-label correlations, is superior to exDAP which treats each label
independently and decomposes the multi-label classification problem as multiple single label
classification problems. Comparing the two proposed algorithms – DMP and TraMP, the
main difference is that TraMP transductively exploits the manifold structure of the test data
for label prediction. Figure 1 shows that this tranductive label prediction algorithm is better
overall. Specifically, TraMP has much better Micro-F1, Ranking Loss and AP than DMP.
The NN classifier (Eq (3)) used in DMP is directly minimising the Hamming Loss. This
explains why TraMP is slightly worse than DMP on IAPCTC-12 on Hamming Loss.
Effectiveness of the self-training step In this experiment we compare the results of our
DMP and TraMP with and without the self-training step in Eq (6). We use ‘-’ and ‘+’ to
indicate algorithms without and with self-training respectively. Both DMP and TraMP use
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Figure 2: Effectiveness of self-training on DMP and TraMP.

Groundtruth sand-beach, landscape-nature, grass sand-beach,
mountain,sky mountain, sky sky

Mul-DR+DMP sand-beach, landscape-nature, grass sand-beach,
sky mountain, sky sky

Mul-DR+TraMP sand-beach, landscape-nature, grass, ground, ground, sky,
mountain, sky mountain, sky landscape-nature sand-beach

DeViSE+DMP sky – – sky
Table 1: Examples of multi-label zero-shot predictions on IAPRTC-12 dataset. Top 8 most
frequent labels of landscape-nature branch are considered.

Mul-DR to infer the word vector ŶT . As shown in Fig. 2, the self-training step clearly has
a positive influence on the multi-label prediction performance. This result suggests that this
simple step is helpful in making the learned Mul-DR model from the auxiliary data generalise
better to the target data.
Qualitative results Table 1 gives a qualitative comparison of multi-label annotation by our
DMP and TraMP with DeViSE on IAPCTC-12. As discussed, DeViSE is too conservative
on this dataset and assigns no label to most instances.

5 Conclusion and future work

We have for the first time generalised zero-shot learning from the single label to the multi-
label setting. It is somewhat surprising that it turns out to be possible to exploit label corre-
lation at test time in the zero shot case – since there is no dataset of examples to learn co-
occurance statistics in the conventional way. We achieve this via introducing novel strategies
to exploit the compositionality of the semantic word space, and by transductively exploiting
the unlabelled test data.

Besides the proposed tailor-made multi-label algorithms – DMP and TraMP, our strategy
could potentially help other existing multi-label algorithms to generalise to the multi-label
zero-shot learning problem. Finally, we note that many prototypes of the power set P actually
have an extremely low chance to occur in the test dataset. They should not be considered in
the same way as the other more likely prototypes. Thus another line of ongoing research is
to investigate how to prune low-probability prototypes from the power set P.



10 FU ET AL: TRANSDUCTIVE MULTI-LABEL ZERO-SHOT LEARNING

References
[1] I. Biederman. Recognition by components - a theory of human image understanding.

Psychological Review, 1987.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-
chines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[3] Ke Chen, Shaogang Gong, Tao Xiang, and Chen Chang Loy. Cumulative attribute
space for age and crowd density estimation. In CVPR, 2013.

[4] Qing Da, Yang Yu, and Zhi-Hua Zhou. Learning with augmented class by exploiting
unlabeled data. In AAAI, 2014.

[5] Andre Elisseeff and Jason Weston. A kernel method for multi-labelled classification.
In NIPS, 2001.

[6] V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, December 2007.

[7] Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeffrey Dean, Marc Aure-
lio Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic embedding model
andrea. In NIPS, 2013.

[8] Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong. Attribute learn-
ing for understanding unstructured social activity. In ECCV, 2012.

[9] Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong. Learning multi-
modal latent attributes. TPAMI, 2013.

[10] Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Zhengyong Fu, and Shaogang Gong.
Transductive multi-view embedding for zero-shot recognition and annotation. In
ECCV, 2014.

[11] Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Shaogang Gong, and Yuan Yao. In-
terestingness prediction by robust learning to rank. In ECCV, 2014.

[12] Michael Grubinger. Analysis and Evaluation of Visual Information Systems Perfor-
mance. PhD thesis, School of Computer Science and Mathematics, Faculty of Health,
Engineering and Science, Victoria University, 2007.

[13] Bharath Hariharan, S. V. Vishwanathan, and Manik Varma. Efficient max-margin
multi-label classification with applications to zero-shot learning. Mach. Learn., 2012.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer New York Inc., 2009.

[15] Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Improv-
ing word representations via global context and multiple word prototypes. In ACL,
2012.

[16] Feng Kang, Rong Jin, and Rahul Sukthankar. Correlated label propagation with appli-
cation to multi-label learning. In CVPR, 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


FU ET AL: TRANSDUCTIVE MULTI-LABEL ZERO-SHOT LEARNING 11

[17] Xiangnan Kong, M.K. Ng, and Zhi-Hua Zhou. Transductive multilabel learning via
label set propagation. Knowledge and Data Engineering, IEEE Transactions on, 2013.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

[19] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect
unseen object classes by between-class attribute transfer. In CVPR, 2009.

[20] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based clas-
sification for zero-shot visual object categorization. IEEE TPAMI, 2013.

[21] Ryan Layne, Timothy M. Hospedales, and Shaogang Gong. Re-id: Hunting attributes
in the wild. In BMVC, 2014.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representation in vector space. In Proceedings of Workshop at ICLR, 2013.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013.

[24] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope. IJCV, 42, 2001.

[25] Mark Palatucci, Geoffrey Hinton, Dean Pomerleau, and Tom M. Mitchell. Zero-shot
learning with semantic output codes. In NIPS, 2009.

[26] Anastasia Pentina and Christoph H. Lampert. A pac-bayesian bound for lifelong learn-
ing. In ICML, 2014.

[27] Ali Sharif Razavian, Josephine Sullivan, and Stefan Carlsson. Cnn features off-the-
shelf : an astounding baseline for recognition. arXiv:1403.6382v1, 2014.

[28] Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge transfer
and zero-shot learning in a large-scale setting. In CVPR, 2012.

[29] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. In ICLR, 2014.

[30] Viktoriia Sharmanska, Novi Quadrianto, and Christoph H. Lampert. Augmented at-
tribute representations. In ECCV, 2012.

[31] Richard Socher, Milind Ganjoo, Hamsa Sridhar, Osbert Bastani, Christopher D. Man-
ning, and Andrew Y. Ng. Zero-shot learning through cross-modal transfer. In NIPS,
2013.

[32] Le Wu and Min-Ling Zhang. Multi-label classification with unlabeled data: An induc-
tive approach. In ACML, pages 197–212, 2013.

[33] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition, 2007.



12 FU ET AL: TRANSDUCTIVE MULTI-LABEL ZERO-SHOT LEARNING

[34] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, page 1, 2013.

[35] Zhi-Hua Zhou and Zhao-Qian Chen. Hybrid decision tree. Knowledge-Based Systems,
15(8):515 – 528, 2002.


