205 research outputs found

    Influence of Cr adhesion layer on detection of amyloid-derived diffusible ligands based on localized surface plasmon resonance

    Get PDF
    A Cr adhesion layer inserted between Ag nanoparticles and a glass substrate, for the purpose of improving the adhesion of Ag nanoparticles to glass, was observed to cause an abnormal peak shift of extinction spectra in non-specific reactions. The undesired peak shift misleads molecule detection in non-specific reactions. To solve this issue, a practical technique using n-propyl-trimethoxysilane-based passivation for the detection of amyloid-derived diffusible ligands was investigated as a route to eliminate the abnormal peak shifting observed in the non-specific reactions. To evaluate this passivation technique, localized surface plasmon resonance immunoassay experiments were conducted. Experimental results derived with and without the passivation process were investigated as a basis for comparative analysis. Our experimental results demonstrate that this passivation technique effectively eliminates the observed peak shift originating from the Cr adhesion layer. © 2009 Springer Science+Business Media, LLC

    Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila: A case of functional divergence in a multigene family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes.</p> <p>Results</p> <p>A total of 165 ABC transporter genes, constituting a highly expanded superfamily relative to its size in other eukaryotes, were identified in the macronuclear genome of the ciliate <it>Tetrahymena thermophila</it>. Based on ortholog comparisons, phylogenetic topologies and intron characterizations, each highly expanded ABC transporter family of <it>T</it>. <it>thermophila </it>was classified into several distinct groups, and hypotheses about their evolutionary relationships are presented. A comprehensive microarray analysis revealed divergent expression patterns among the members of the ABC transporter superfamily during different states of physiology and development. Many of the relatively recently formed duplicate pairs within individual ABC transporter families exhibit significantly different expression patterns. Further analysis showed that multiple mechanisms have led to functional divergence that is responsible for the preservation of duplicated genes.</p> <p>Conclusion</p> <p>Gene duplications have resulted in an extensive expansion of the superfamily of ABC transporters in the <it>Tetrahymena </it>genome, making it the largest example of its kind reported in any organism to date. Multiple independent duplications and subsequent divergence contributed to the formation of different families of ABC transporter genes. Many of the members within a gene family exhibit different expression patterns. The combination of gene duplication followed by both sequence divergence and acquisition of new patterns of expression likely plays a role in the adaptation of <it>Tetrahymen </it>a to its environment.</p

    A Novel Approach to Recovering Depth from Defocus

    Get PDF
    This paper proposes a novel approach to recovering depth from defocus, which is a deterministic approach in spatial domain. Two defocused gray images from the same scene are obtained by changing two parameters (image distance and focal length of camera) other than only parameter (image distance). The idea of this approach is to convert the gray images into the gradient images by Canny operator other than Sobel operator, then calculate the ratio of the area of region with large gradient value to that of the whole image region in each block for each defocused image by moment-preserving method, and recover depth from scene according to the ratio of the ratio of one gradient image to that of the other gradient image. The experimental results show that the proposed approach is more accurate and efficient than the traditional approach

    Case Report: A Novel COL1A1 Missense Mutation Associated With Dentineogenesis Imperfecta Type I

    Get PDF
    Background: Osteogenesis imperfecta (OI) is a clinical and genetic disorder that results in bone fragility, blue sclerae and dentineogenesis imperfecta (DGI), which is mainly caused by a mutation in the COL1A1 or COL1A2 genes, which encode type I procollagen.Case Report: A missense mutation (c.1463G &gt; C) in exon 22 of the COL1A1 gene was found using whole-exome sequencing. However, the cases reported herein only exhibited a clinical DGI-I phenotype. There were no cases of bone disease or any other common abnormal symptom caused by a COL1A1 mutation. In addition, the ultrastructural analysis of the tooth affected with non-syndromic DGI-I showed that the abnormal dentine was accompanied by the disruption of odontoblast polarization, a reduced number of odontoblasts, a reduction in hardness and elasticity, and the loss of dentinal tubules, suggesting a severe developmental disorder. We also investigated the odontoblast differentiation ability using dental pulp stem cells (DPSCs) that were isolated from a patient with DGI-I and cultured. Stem cells isolated from patients with DGI-I are important to elucidate their pathogenesis and underlying mechanisms to develop regenerative therapies.Conclusion: This study can provide new insights into the phenotype-genotype association in collagen-associated diseases and improve the clinical diagnosis of OI/DGI-I

    High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth

    Get PDF
    The high-quality and low-cost of the graphene preparation method decide whether graphene is put into the applications finally. Enormous efforts have been devoted to understand and optimize the CVD process of graphene over various d-block transition metals (e.g. Cu, Ni and Pt). Here we report the growth of uniform high-quality single-layer, single-crystalline graphene flakes and their continuous films over p-block elements (e.g. Ga) liquid films using ambient-pressure chemical vapor deposition. The graphene shows high crystalline quality with electron mobility reaching levels as high as 7400 cm2 V−1s−1 under ambient conditions. Our employed growth strategy is ultra-low-loss. Only trace amounts of Ga are consumed in the production and transfer of the graphene and expensive film deposition or vacuum systems are not needed. We believe that our research will open up new territory in the field of graphene growth and thus promote its practical application

    Controllable sliding transfer of wafer‐size graphene

    Get PDF
    The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications

    Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome

    Get PDF
    Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses

    Roles of Host Immunity in Viral Myocarditis and Dilated Cardiomyopathy

    No full text
    The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity, working together, contribute to the development of myocarditis and dilated cardiomyopathy

    Multimodal Fake News Detection Incorporating External Knowledge and User Interaction Feature

    No full text
    With the development of online social media, the number of various news has exploded. While social media provides an information platform for news release and dissemination, it also makes fake news proliferate, which may cause potential social risks. How to detect fake news quickly and accurately is a difficult task. The multimodal fusion fake news detection model is the current research focus and development trend. However, in terms of content, most existing methods lack the mining of background knowledge hidden in the news content and ignore the connection between background knowledge and existing knowledge system. In terms of the propagation chain, the research tends to emphasize only the single chain from the previous communication node, ignoring the intricate communication chain and the mutual influence relationship among users. To address these problems, this paper proposes a multimodal fake news detection model, A-KWGCN, based on knowledge graph and weighted graph convolutional network (GCN). The model fully extracted the features of the content and the interaction between users of the news dissemination. On the one hand, the model mines relevant knowledge concepts from the news content and links them with the knowledge entities in the wiki knowledge graph, and integrates knowledge entities and entity context as auxiliary information. On the other hand, inspired by the “similarity effect” in social psychology, this paper constructs a user interaction network and defines the weighted GCN by calculating the feature similarity among users to analyze the mutual influence of users. Two public datasets, Twitter15 and Twitter16, are selected to evaluate the model, and the accuracy reaches 0.905 and 0.930, respectively. In the comparison experiments, A-KWGCN model has more significant advantages than the other six comparison models in four evaluation indexes. Also, ablation experiments are conducted to verify that knowledge module and weighted GCN module play the significant role in the detection of fake news
    corecore