43,373 research outputs found

    Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance

    Get PDF
    In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures

    Episodic neurologic disorders: syndromes, genes, and mechanisms.

    Get PDF
    Many neurologic diseases cause discrete episodic impairment in contrast with progressive deterioration. The symptoms of these episodic disorders exhibit striking variety. Herein we review what is known of the phenotypes, genetics, and pathophysiology of episodic neurologic disorders. Of these, most are genetically complex, with unknown or polygenic inheritance. In contrast, a fascinating panoply of episodic disorders exhibit Mendelian inheritance. We classify episodic Mendelian disorders according to the primary neuroanatomical location affected: skeletal muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or central nervous system (CNS). Most known Mendelian mutations alter genes that encode membrane-bound ion channels. These mutations cause ion channel dysfunction, which ultimately leads to altered membrane excitability as manifested by episodic disease. Other Mendelian disease genes encode proteins essential for ion channel trafficking or stability. These observations have cemented the channelopathy paradigm, in which episodic disorders are conceptualized as disorders of ion channels. However, we expand on this paradigm to propose that dysfunction at the synaptic and neuronal circuit levels may underlie some episodic neurologic entities

    On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere

    Get PDF
    The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted

    Mixing among the neutral Higgs bosons and rare B decays in the CP violating MSSM

    Full text link
    Considering corrections from two-loop Feynman diagrams which involve gluino at large tanβ\tan\beta, we analyze the effects of possible CP phases on the rare B decays: Bˉsl+l\bar{B}_{_{s}} \to l^+l^- and BˉKl+l\bar{B}\to Kl^+l^- in the CP violating minimal supersymmetric extension of the standard model. It is shown that the results of exact two loop calculations obviously differ from that including one-loop contributions plus threshold radiative corrections. The numerical analysis indicates that the possibly large CP phases strongly affect the theoretical estimation of the branching ratios, and this results coincide with the conclusion of some other works appearing in recent literature.Comment: revtex, 53 pages, including 19 figure

    Dynamic Potential-Ph Diagrams Application to Electrocatalysts for Water Oxidation

    Get PDF
    The construction and use of "dynamic potential-pH diagrams" (DPPDs), that are intended to extend the usefulness of thermodynamic Pourbaix diagrams to include kinetic considerations is described. As an example, DPPDs are presented for the comparison of electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), an important electrochemical reaction because of its key role in energy conversion devices and biological systems (water electrolyses, photoelectrochemical water splitting, plant photosynthesis). The criteria for obtaining kinetic data are discussed and a 3-D diagram, which shows the heterogeneous electron transfer kinetics of an electrochemical system as a function of pH and applied potential is presented. DPPDs are given for four catalysts: IrO(2), Co(3)O(4), Co(3)O(4) electrodeposited in a phosphate medium (Co-Pi) and Pt, allowing a direct comparison of the activity of different electrode materials over a broad range of experimental conditions (pH, potential, current density). In addition, the experimental setup and the factors affecting the accurate collection and presentation of data (e. g., reference electrode system, correction of ohmic drops, bubble formation) are discussed.Ministry of Education, University and Research PRIN 2008PF9TWZ, 2008N7CYL5Universita degli Studi di MilanoNational Science Foundation CHE-0808927Robert A. Welch Foundation F-0021Center for Electrochemistr

    The first operation and results of the Chung-Li VHF radar

    Get PDF
    The Chung-Li Very High Frequency (VHF) radar is used in the dual-mode operations, applying Doppler beam-swinging as well as the spaced-antenna-drift method. The design of the VHF radar is examined. Results of performance tests are discussed

    Electrical spin protection and manipulation via gate-locked spin-orbit fields

    Full text link
    The spin-orbit (SO) interaction couples electron spin and momentum via a relativistic, effective magnetic field. While conveniently facilitating coherent spin manipulation in semiconductors, the SO interaction also inherently causes spin relaxation. A unique situation arises when the Rashba and Dresselhaus SO fields are matched, strongly protecting spins from relaxation, as recently demonstrated. Quantum computation and spintronics devices such as the paradigmatic spin transistor could vastly benefit if such spin protection could be expanded from a single point into a broad range accessible with in-situ gate-control, making possible tunable SO rotations under protection from relaxation. Here, we demonstrate broad, independent control of all relevant SO fields in GaAs quantum wells, allowing us to tune the Rashba and Dresselhaus SO fields while keeping both locked to each other using gate voltages. Thus, we can electrically control and simultaneously protect the spin. Our experiments employ quantum interference corrections to electrical conductivity as a sensitive probe of SO coupling. Finally, we combine transport data with numerical SO simulations to precisely quantify all SO terms.Comment: 5 pages, 4 figures (color), plus supplementary information 18 pages, 8 figures (color) as ancillary arXiv pd

    Finding the Origin of the Pioneer Anomaly

    Full text link
    Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20 - 70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift can be interpreted as being due to a constant acceleration of a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we present a concept for a deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties to an accuracy of at least two orders of magnitude below the anomaly's size. The proposed mission will not only provide a significant accuracy improvement in the search for small anomalous accelerations, it will also determine if the anomaly is due to some internal systematic or has an external origin. A number of critical requirements and design considerations for the mission are outlined and addressed. If only already existing technologies were used, the mission could be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio
    corecore