13,284 research outputs found

    Preparation and properties of poly(vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids

    Get PDF
    Graphene oxide coated silica hybirds (SiO2-GO) were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride) (PVDF) by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM), polarized optical microscopy (POM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA) measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement

    High doses of cobalt inhibited hair follicle development in Rex Rabbits

    Full text link
    [EN] An experiment was conducted to investigate the effect of cobalt supplementation on hair follicle development in rabbits. Rex rabbits (30-d-old, n=180) were divided randomly into five equal treatment groups: rabbits fed a basal diet (control, measured cobalt content of 0.27 mg/kg) or rabbits fed a basal diet with an additional 0.1, 0.4, 1.6 or 6.4 mg/kg cobalt (in the form of cobalt sulfate) supplementation (measured cobalt contents of 0.35, 0.60, 1.83 and 6.62 mg/kg, respectively). Treatment with 6.4 mg/kg cobalt significantly decreased hair follicle density (P<0.05), while low levels of cobalt (0.1-1.6 mg/kg) had no effect on hair follicle density (P>0.05). The addition of dietary cobalt at the highest level examined (6.4 mg/kg) significantly increased the gene expression of bone morphogenetic protein (BMP) 2 and BMP4 in skin tissue (P<0.05), while the mRNA levels of versican, alkaline phosphatase, hepatocyte growth factor, and noggin remained unchanged (P>0.05). ComparedNatural Science Foundation of Shandong Province (ZR2018QC004, ZR2018MC025). Modern Agro-industry Technology Research system (CARS-43-B-1). Shandong ‘Double Tops’ Programme and Youth ScienceLiu, L.; Gao, Q.; Wang, C.; Fu, Z.; Wang, K.; Li, FC. (2019). High doses of cobalt inhibited hair follicle development in Rex Rabbits. World Rabbit Science. 27(4):217-225. https://doi.org/10.4995/wrs.2019.12038OJS217225274Blessing M., Nanney L.B., King L.E., Jones C.M., Hogan, B.L.M. 1993. Transgenic mice as a model to study the role of TGF-β-related molecules in hair follicles. Genes Dev., 7: 204-215. https://doi.org/10.1101/gad.7.2.204Chong H.W. 2016. Metformin, an activator of AMPK, promotes the growth of hair follicles via AMPK/β-catenin signaling pathway. Program, 68: 112-113.De Blas C., Mateos G.G. 1998. Feed formulation. In: Nutrition of the Rabbit. CAB International Press. Wallingford (UK).Deng Z., Lei X., Zhang X., Zhang H., Liu S., Chen Q., Hu H., Wang X., Ning L., Cao Y., Zhao T., Zhou J., Chen T., Duan E. 2015. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J. Mol. Cell Biol., 7: 62-72. https://doi.org/10.1093/jmcb/mjv005Fuchs E., Merrill B.J., Jamora C., DasGupta R. 2001. At the roots of a never-ending cycle. Dev. Cell, 1: 13-25. https://doi.org/10.1016/s1534-5807(01)00022-3Fu C., Liu L., Li F. 2018. Acetate alters the process of lipid metabolism in rabbits. Animal, 12: 1895-1902. https://doi.org/10.1017/S1751731117003275Gallo S., Gatti S., Sala V., Albano R., Costelli P., Casanova E., Comoglio P.M., Crepaldi T. 2014. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chlorideinduced apoptosis and autophagy. Cell Death Dis., 5: e1185. https://doi.org/10.1038/cddis.2014.155Ghaedi M., Ahmadi F., Shokrollahi A. 2007. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J. Hazard. Mater., 142: 272-278. https://doi.org/10.1016/j.jhazmat.2006.08.012Huelsken J., Vogel R., Erdmann B., Cotsarelis G., Birchmeier W. 2001. Birchmeier β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105: 533-545. https://doi.org/10.1016/s0092-8674(01)00336-1Hynd P.I. 2000. The nutritional biochemistry of wool and hair follicles. Anim. Sci., 70: 181-195. https://doi.org/10.1017/s1357729800054655John F.T., Gordon H.E. 1947. Is cobalt a dietary essential for the rabbit. J. Nutr., 34: 121-127. https://doi.org/10.1093/jn/34.1.121Kawakami T., Hanao N., Nishiyama K., Kadota Y, Inoue M., Sato M., Suzuki S. 2012. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol., 258: 32-42. https://doi.org/10.1016/j.taap.2011.10.004Kellenberger A.J., Tauchi M. 2013. Mammalian target of rapamycin complex 1 (mTORC1) may modulate the timing of anagen entry in mouse hair follicles. Exp. Dermatol., 22: 77-80. https://doi.org/10.1111/exd.12062Krugluger W., Stiefsohn K., Laciak K., Moser K., Moser C. 2011. Vitamin B12 activates the Wnt-pathway in human hair follicle cells by induction of betacatenin and inhibition of glycogensynthase kinase-3 transcription. J. Cosmet. Dermatol. Sci. App., 11: 25-29. https://doi.org/10.4236/jcdsa.2011.12004Li C.T., Liu J.X., Yu B., Liu R., Dong C., Li S.J. 2016. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia. Mol. Med. Rep., 14: 689-696. https://doi.org/10.3892/mmr.2016.5324Li K.R., Zhang Z.Q., Yao J., Zhao Y.X., Duan J., Cao C., Jiang Q. 2013. Ginsenoside Rg-1 protects retinal pigment epithelium (RPE) cells from cobalt chloride (CoCl2) and hypoxia assaults. PLoS One, 8: e84171. https://doi.org/10.1371/journal.pone.0084171Li Y.H., Zhang K., Ye J.X., Lian X.H., Yang T. 2011. Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway. Clin. Exp. Dermatol., 36: 534-540. https://doi.org/10.1111/j.1365-2230.2011.04019.xLiu L., Liu H., Fu C., Li C., Li F. 2017. Acetate induces anorexia via up-regulating the hypothalamic pro-opiomelanocortin (POMC) gene expression in rabbits. J. Anim. Feed Sci., 26: 266-273. http://doi.org/10.22358/jafs/75979/2017Liu L., Liu H., Ning L., Li F. 2019. Rabbit SLC15A1, SLC7A1 and SLC1A1 genes are affected by site of digestion stage of development and dietary protein content. Animal, 13: 326-332. https://doi.org/10.1017/S1751731118001404Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262Madaan A., Verma R., Singh A.T., Jaggi M. 2018. Review of hair follicle dermal papilla cells as in vitro screening model for hair growth. Int. J. Cosmet. Sci., 40: 429-450. https://doi.org/10.1111/ics.12489Marlon R.S., Ruth S.U., Ralf P. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol., 19: 132-142. https://doi.org/10.1016/j.cub.2008.12.005McDowell L.R. 1992. Minerals in animal and human nutrition. Academic Press, Inc., San Diego, CA. Paus R., Cotsarelis G. 1999. The biology of hair follicles. N. Engl. J. Med., 341: 491-497. https://doi.org/10.1056/NEJM199908123410706Poeggeler B., Schulz C., Pappolla M.A., Bodó E., Tiede S., Lehnert H., Paus R. 2010. Leptin and the skin: a new frontier. Exp. Dermatol., 19: 12-28. https://doi.org/10.1111/j.1600-0625.2009.00930.xReddy S., Andl T.H., Bagasra A., Lu M.M., Epstein D.J., Morrisey E.E., Millar S.E. 2001. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev., 107: 69-82. https://doi.org/10.1016/s0925-4773(01)00452-xRendl M., Polak L., Fuchs E. 2008. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev., 22: 543-557. https://doi.org/10.1101/gad.1614408Roges G.E. 2004. Hair follicle differentiation and regulation. Int. J. Biol. Sci., 48: 163-170.Schwarz F.J., Kirchgessner M., Stangl G.I. 2000. Cobalt requirement of beef cattle feed intake and growth at different levels of cobalt supply. J. Anim. Physiol. Anim. Nutr., 83: 121-131. https://doi.org/10.1046/j.1439-0396.2000.00258.xStenn K.S., Paus R. 2001. Controls of hair follicle cycling. Physiol. Rev., 81: 449-494. https://doi.org/10.1152/physrev.2001.81.1.449Wang L.C., Liu Z.Y., Gambardella L., Delacour A., Shapiro R., Yang J., Sizing I., Rayhorn P., Garber E.A., Benjamin C.D., Williams K.P., Taylor F.R., Barrandon Y., Ling L., Burkly L.C. 2000. Regular articles: conditional disrupt ion of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Invest. Dermatol., 114: 901-908. https://doi.org/10.1046/j.1523-1747.2000.00951.xWeinberg W.C., Goodman L.V., George C., Morgan D.L., Ledbetter S., Yuspa S.H., Lichti U. 1993. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J. Invest. Dermatol., 100: 229-236. https://doi.org/10.1111/1523-1747.ep12468971Wilson N., Hynd P.I., Powell B.C. 1999. The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle. Exp. Dermatol., 8: 367-368.Wolff G.L., Kodell R.L., Moore S.R., Cooney C.A. 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/A mice. FASEB J., 11: 949-957. https://doi.org/10.1096/fasebj.12.11.949Zhong X., Lin R., Li Z., Mao J., Chen L. 2014. Effects of Salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells. Biol. Pharm. Bull., 37: 1199-1206. https://doi.org/10.1248/bpb.b14-0010

    Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review

    Get PDF
    Motion perception is a critical capability determining a variety of aspects of insects' life, including avoiding predators, foraging and so forth. A good number of motion detectors have been identified in the insects' visual pathways. Computational modelling of these motion detectors has not only been providing effective solutions to artificial intelligence, but also benefiting the understanding of complicated biological visual systems. These biological mechanisms through millions of years of evolutionary development will have formed solid modules for constructing dynamic vision systems for future intelligent machines. This article reviews the computational motion perception models originating from biological research of insects' visual systems in the literature. These motion perception models or neural networks comprise the looming sensitive neuronal models of lobula giant movement detectors (LGMDs) in locusts, the translation sensitive neural systems of direction selective neurons (DSNs) in fruit flies, bees and locusts, as well as the small target motion detectors (STMDs) in dragonflies and hover flies. We also review the applications of these models to robots and vehicles. Through these modelling studies, we summarise the methodologies that generate different direction and size selectivity in motion perception. At last, we discuss about multiple systems integration and hardware realisation of these bio-inspired motion perception models

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander

    Get PDF
    Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild-caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A-G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism.Peer reviewe
    • …
    corecore