38 research outputs found

    Restricting the nonlinearity parameter in soil greenhouse gas flux calculation for more reliable flux estimates

    Get PDF
    The static chamber approach is often used for greenhouse gas (GHG) flux measurements, whereby the flux is deduced from the increase of species concentration after closing the chamber. Since this increase changes diffusion gradients between chamber air and soil air, a nonlinear increase is expected. Lateral gas flow and leakages also contribute to non linearity. Several models have been suggested to account for this non linearity, the most recent being the Hutchinson±Mosier regression model (HMR). However, the practical application of these models is challenging because the researcher needs to decide for each flux whether a nonlinear fit is appropriate or exaggerates flux estimates due to measurement artifacts. In the latter case, a flux estimate from the linear model is a more robust solution and introduces less arbitrary uncertainty to the data. We present the new, dynamic and reproducible flux calculation scheme, KAPPA.MAX, for an improved trade-off between bias and uncertainty (i.e. accuracy and precision). We develop a tool to simulate, visualise and optimise the flux calculation scheme for any specific static N2O chamber measurement system. The decision procedure and visualisation tools are implemented in a package for the R software. Finally, we demonstrate with this approach the performance of the applied flux calculation scheme for a measured flux dataset to estimate the actual bias and uncertainty. The KAPPA.MAX method effectively improved the decision between linear and nonlinear flux estimates reducing the bias at a minimal cost of uncertainty

    Limited protection of macro-Aggregate-occluded organic carbon in Siberian steppe soils

    Get PDF
    Macro-aggregates especially in agricultural steppe soils are supposed to play a vital role for soil organic carbon (OC) stabilization at a decadal timescale. While most research on soil OC stabilization in steppes focused on North American prairie soils of the Great Plains with information mainly provided by short-term incubation experiments, little is known about the agricultural steppes in southwestern Siberia, though they belong to the greatest conversion areas in the world and occupy an area larger than that in the Great Plains. To quantify the proportion of macro-aggregate-protected OC under different land use as function of land use intensity and time since land use change (LUC) from pasture to arable land in Siberian steppe soils, we determined OC mineralization rates of intact (250–2000 µm) and crushed (< 250 µm) macro-aggregates in long-term incubations over 401 days (20 °C; 60 % water holding capacity) along two agricultural chronosequences in the Siberian Kulunda steppe. Additionally, we incubated bulk soil (< 2000 µm) to determine the effect of LUC and subsequent agricultural use on a fast and a slow soil OC pool (labile vs. more stable OC), as derived from fitting exponential-decay models to incubation data. We hypothesized that (i) macro-aggregate crushing leads to increased OC mineralization due to an increasing microbial accessibility of a previously occluded labile macro-aggregate OC fraction, and (ii) bulk soil OC mineralization rates and the size of the fast OC pool are higher in pasture than in arable soils with decreasing bulk soil OC mineralization rates and size of the fast OC pool as land use intensity and time since LUC increase. Against our hypothesis, OC mineralization rates of crushed macro-aggregates were similar to those of intact macro-aggregates under all land use regimes. Macro-aggregate-protected OC was almost absent and accounted for < 1 % of the total macro-aggregate OC content and to a maximum of 8 ± 4 % of mineralized OC. In accordance to our second hypothesis, highest bulk soil OC mineralization rates and sizes of the fast OC pool were determined under pasture, but mineralization rates and pool sizes were unaffected by land use intensity and time since LUC. However, at one chronosequence mean residence times of the fast and slow OC pool tended to decrease with increasing time since establishment of arable use. We conclude that the tillage-induced breakdown of macro-aggregates has not reduced the OC contents in the soils under study. The decline of OC after LUC is probably attributed to the faster soil OC turnover under arable land as compared to pasture at a reduced plant residue input.BMBF/01 LL 0905Russian Ministry of Education and Science/14.B25.31.003

    Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators

    Get PDF
    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.Peer reviewe

    Nitrification inhibitors reduce N2O emissions induced by application of biogas digestate to oilseed rape

    Get PDF
    Winter oilseed rape (WOSR) is the major oil crop cultivated in Europe and the most important feedstock for biodiesel. Up to 90% of the greenhouse gas (GHG) emissions from biodiesel production can occur during oilseed rape cultivation. Therefore, mitigation strategies are required and need to focus on direct nitrous oxide (N2O) emission as one of the largest GHG contributors in biodiesel production. Earlier studies show that nitrification inhibitors (NIs) can reduce N2O emissions derived from N-fertilization. Since information on the effect of biogas digestates with or without NIs on N2O emissions from WOSR fields is scarce, the aim of this study was to evaluate their effects on N2O emissions, mineral N dynamics, and oil yield in WOSR production fertilized with digestate. The study was conducted at five sites across Germany over three years resulting in 15 full site-years data sets. Across all sites and years, N2O emission from WOSR fertilized with biogas digestate (180 kg NH4+-N ha−1yr−1) ranged between 0.2 and 3.5 kg N2O–N ha−1 yr−1. Due to the reduction of the nitrate concentrations following digestate application, application of NI significantly reduced annual N2O emission by 36%. Our results demonstrate that NI can be an effective measure for reducing N2O emissions from digestate application, but its effectiveness depends on soil and weather conditions, and ultimately on the site-specific potential for N2O production and release. There was no effect of NI application on grain and oil yield.Bundesministerium für Ernährung und Landwirtschaft (DE)Universität Hohenheim (3153)Peer Reviewe

    Crop rotations with and without legumes: a review

    Get PDF
    Leguminosen sind im ökologischen Landbau aufgrund ihrer Fähigkeit zur Luftstickstofffixierung unverzichtbar für die Stickstoffversorgung der Ackerkulturen und die Proteinversorgung der Nutztiere. Im konventionellen Anbau bieten Leguminosen die Möglichkeit, die häufig getreideintensiven Fruchtfolgen aufzulockern. Eine der wichtigsten Wirkungen dieses Break-crop-Effekts ist das Durchbrechen des Lebenszyklus von fruchtartenspezifischen Pathogenen und der damit verbundenen Einsparung von Pflanzenschutzmitteln. Die vorliegende Übersichtsarbeit stellt den derzeitigen Stand des Wissens zu Fruchtfolgen mit und ohne Leguminosen zusammen. Dabei werden ackerbauliche, ökologische und ökonomische Wirkungen des Anbaus groß- und kleinkörnig Leguminosenarten als Haupt- oder Zwischenfrüchte bzw. Unter­saaten oder als Komponenten in Gemengen dar­gestellt und bewertet. Der Schwerpunkt liegt dabei auf relevanten Publikationen in wissenschaftlichen Journalen sowie Praxis- und Forschungsberichten der Jahre 2010 – 2020 die in Deutschland oder vergleichbaren klimatischen Bedingungen durchgeführt wurden. Abschließend wird daraus der notwendige Forschungsbedarf für die Themenbereiche Pflanzenbau (konventionell und ökologisch), Pflanzenschutz, Ökonomie, Ökologie und Klimaschutz abgeleitet.In organic farming, legumes are indispensable for the nitro­gen supply of arable crops and the protein supply of livestock due to their ability to fix atmospheric nitrogen. In conventional farming, legumes offer the potential to break the often cereal-intensive crop rotations. One of the most important consequences of the break-crop effect is the interruption of the life cycle of crop-specific pathogens and the associated savings of pesticides. This review summarizes the current state of knowledge on crop rotations with and without legumes. It presents and evaluates the agronomic, ecological and economic effects of the cultivation of large- and small-seeded legume species as main or catch crops, when undersown in other crops, or used as components in mixtures. The focus is on relevant publications in scientific journals as well as practice and research reports published between 2010 and 2020 which were carried out in Germany or under comparable climatic conditions. Finally, essential research needs in the areas of crop production (conventional and organic), crop protection, economics, ecology, and climate protection are identified

    Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators

    Get PDF
    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.Peer reviewe
    corecore