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Abstract

Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation

effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop

production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop

residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oil-

seed rape production are often estimated using emission factors that account for crop-type specifics only with

respect to crop residues. This meta-analysis therefore aimed to assess annual N2O emissions from winter oilseed

rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identifi-
cation of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points

deriving from 12 different field sites. N2O emissions increased exponentially with N-fertilization rates, but inter-

year and site-specific variability were high and climate variables or soil parameters did not improve the predic-

tion model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals

fertilized at the same rate. At a common fertilization rate of 200 kg N ha�1 yr�1, the mean fraction of fertilizer

N that was lost as N2O-N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield-

scaled N2O emissions increased after a critical N surplus of about 80 kg N ha�1 yr�1. The difference in N2O

emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N con-
tents in oilseed rape’s crop residues. However, annual N2O emissions of winter oilseed rape were still lower

than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop-type

classes of cereals or other crops should be reconsidered.
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Introduction

Rising concern about the finite nature of fossil fuels and

growing awareness about their impact on climate

change have led to an intensified discussion on substi-

tutes for gasoline, diesel, and natural gas. In recent

years, the discussion also found its way into politics.

The European Union (EU) adopted for the first time a

legally binding goal for the share of biofuels in the

Renewable Energy Directive (RED, 2009). It implies that

the share of biofuel in transport energy consumption

has to be at least 10% by 2020. As a consequence, the

biofuel consumption in the EU is rapidly growing. From

2000 to 2010, it increased 19-fold (Eurostat, 2012) and

reached a 5.1% share of total fuel consumption for

transportation in 2012 (Eurostat, 2014b). In the EU, bio-

diesel is the dominant biofuel with a market share of

75% (Hamelinck et al., 2012). The most common feed-

stock for its production is rapeseed oil, accounting for

56% in 2010 (Hamelinck et al., 2012). Because car

engines need to be modified for the direct use of rape-

seed oil, it is commonly converted into methyl ester of

rapeseed (RME) (Schubert et al., 2010).

From 2008 to 2013, the oilseed rape cultivation area in

the EU increased by 10%, resulting in 6.7 Mha in 2013

for oilseed rape cultivation, mostly in Germany, France,

Poland, and the UK (Eurostat, 2014a). In addition to the

10% target, sustainability criteria for biofuel were intro-

duced by the RED (RED, 2009). Accordingly, biofuels

may only be accounted for the target if their consump-

tion reduces greenhouse gas (GHG) emissions by 35%

as compared to the fossil alternative. From 2017
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onward, the necessary GHG reduction is 50%. The

requirements for biofuels in terms of their GHG balance

thus continue to grow.

One of the most important contributions to the GHG

balance of biofuels is N2O that is emitted from soils dur-

ing biofuel feedstock production (Don et al., 2012). Crut-

zen et al. (2008) argued it may even negate biofuels

GHG benefits if all N2O emissions related to feedstock

production are accounted for as it was done in their

top–down approach. The ranges of N2O emissions and

total field GHG emissions that are given in life cycle

assessments (LCA) of RME are wide. In a meta-study

on biofuel LCAs it was shown that 64–90% of total

GHG emissions of RME production are due to oilseed

rape cultivation and that N2O field emissions account

for 35–47% of these emissions (Hoefnagels et al., 2010).

Winter oilseed rape (referred to as rape in the follow-

ing) has a high nitrogen (N) demand (Sieling & Kage,

2010). This leads to fertilization rates often exceeding

200 kg N ha�1 yr�1 which is at the upper end of N fer-

tilizer additions to annual crops. Moreover, rape’s sea-

sonal dynamics of N uptake are different from those of

other annual crops. In autumn, its N uptake is faster as

compared to winter cereals (Sieling & Kage, 2010). Soil

mineral N content is therefore reduced under young

rape. The soil N surplus after harvest of rape, however,

is large (Beaudoin et al., 2005) because N uptake by the

rape seeds is relatively small (Rathke et al., 2006) and

N-rich rape residues (D€uV, 2007) mostly remain on the

field. With soil mineral N supply being an important

driver for N2O production and direct emission from

cropland soils (Bouwman et al., 2002), it can be expected

that there are periods during rape cultivation when

N2O emissions are different from those of other arable

crops like cereals. Owing to the rape-specific N dynam-

ics, nitrate leaching after harvest is a well-known prob-

lem of rape fields (Sieling & Kage, 2006; Henke et al.,

2008). Subsequently, rape cultivation’s indirect N2O

emissions may also be substantial (Kern et al., 2010;

Well & Butterbach-Bahl, 2010).

Regarding direct N2O emissions from rape cultiva-

tion, there is an urgent need for a new integrated analy-

sis to reduce the considerable uncertainty that may

strongly influence the outcome of RME LCAs. The great

variation mainly arises from the different approaches

used to estimate N2O emissions from soils cropped with

rape. In most LCAs, direct N2O emissions from man-

aged soils are calculated using the International Panel

on Climate Change (IPCC) default Tier-1 emission factor

(EF) (Cherubini, 2010). According to this EF, 1% of nitro-

gen added to the soil as synthetic and organic fertilizer,

crop residues and by land-use change related organic

matter mineralization is lost as N2O (IPCC, 2006). In

contrast to the IPCC EF, the empiric N2O emission

model that constitutes much of its scientific basis is

stratified according to soil type, climate and type of crop

(Stehfest & Bouwman, 2006). In this Stehfest & Bouw-

man model rape is ascribed to the crop-type class ‘other’

which also includes maize, potatoes and irrigated fields.

Compared to the class of cereals, the N2O emissions of

‘other’ crops were significantly higher. An exponential

influence of N application rate on N2O emission was

found for a dataset with diverse crops. Due to the pre-

dicted high N2O emissions for rape, LCAs of RME that

use the Stehfest & Bouwman model to assess direct N2O

emissions from rape fields may calculate higher field

GHG emissions than those LCAs using the IPCC EF.

Direct N2O emissions from rape field soils can also be

estimated using process-based biogeochemical models

like the DeNitrification-DeComposition model (DNDC)

(Li et al., 1992) or the recently introduced empirical glo-

bal nitrous oxide calculator (GNOC), an online tool to

estimate soil N2O emissions from the cultivation of bio-

fuel crops (JRC, 2013). While each site has to be parame-

terized for N2O emission predictions by the complex

mechanistic DNDC model, for assessments with GNOC

only rough classifications of soil parameters and climatic

zones are needed to obtain crop-specific EF (Edwards

et al., 2012). The class limits and effect values are those

derived from the Stehfest & Bouwman (2006) model.

However, in GNOC rape was aggregated with the crop-

type class of cereals after reevaluation of the Stehfest &

Bouwman (2006) dataset. Compared with the Stehfest &

Bouwman approach, the application of GNOC would

therefore lead to a reduction in N2O emission account-

ing in GHG balances and LCAs of rape cultivation.

The objective of this study was to compile available

data on N2O emissions from rape to answer the follow-

ing questions:

1 How much N2O is directly emitted from soils culti-

vated with rape?

2 How is the rape’s N2O emission influenced by nitro-

gen fertilization?

3 Do N2O emissions of rape and cereals differ systemat-

ically?

4 Are there periods with rape-specific high or low N2O

emissions?

The evaluation may help to deduct rape-specific EF

and recommend balance periods that are adequate to

assess direct N2O emissions induced by rape cultivation.

Material and methods

Data collection and aggregation

For the collection of data on direct N2O emission from oilseed

rape cropping, we extracted all studies including N2O
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measurements in rape fields from the Stehfest & Bouwman

(2006) dataset and extended this dataset by studies recently

published in peer reviewed literature. Therefore, ISI-Web of

science and Google Scholar were searched for the catchwords

‘rape’, ‘canola’, ‘brassica napus’ in combination with ‘N2O’ and

‘nitrous oxide’. Furthermore, data published in PhD thesis and

data from extensive datasets that have been used for previous

publications were considered. Authors were contacted to

acquire selected datasets with a high temporal resolution: Pots-

dam (J. Kern, Leibniz Institute for Agricultural Engineering,

Germany), Rostock (S. Leidel, University of Rostock, Germany)

and Lincolnshire (J. Drewer, CEH Edinburgh, UK). All the

studies were tested for several quality criteria: Only direct field

measurement based N2O flux data were included but no data

obtained from generic process modeling. At least monthly mea-

surements had to be performed. However, most of the consid-

ered studies (90%) were based on weekly or biweekly

measurements.

To keep the dataset as consistent as possible only studies

with winter oilseed rape were taken into account. To include

the N2O emissions during winter in the evaluation only studies

with a minimum measurement period of 300 days were consid-

ered. In some studies (28% of the data points) the measurement

frequency was reduced during winter.

To test soil and climate parameters as driving factors for

N2O emissions from soils, major site characteristics were

extracted from the studies and grouped according to classes

described in Stehfest & Bouwman (2006): Soils with pH values

<5.5 were classified as low pH soils, >7.3 as high pH soils and

those with pH from 5.5 to 7.3 as medium pH soils. For SOC

concentration, the respective limits were 1% and 3%. The soil

textures were assigned to the classes coarse, medium, and fine

if they had less than 18% clay and more than 65% sand, less

than 35% clay and less than 65% sand or more than 35% clay

respectively. Where climate and weather data information were

not sufficiently provided by the authors, data of the weather

stations closest to the respective study sites were used from

Germany0s National Meteorological Service (DWD) or www.

weatherbase.com to ascribe them to climate classes according

to eco-climatic zones (IPCC, 2006).

Measures of N2O emission

Cumulated N2O emissions were recalculated where possible to

start with the first nitrogen fertilizer application to the rape

and stop with the first nitrogen fertilizer application to the suc-

cessive crop. In 22% of the included measurement years, the

rape has been fertilized in autumn. In these cases, the authors

based the calculations of annual N2O emissions on measure-

ments in the balance period from this autumn fertilization until

harvest. In 78% of the remaining measurement years the rape

plots received the first nitrogen fertilization in spring, measure-

ments started at that point and the balance period for annual

N2O emissions included the winter after rape harvest. If mean

and annual N2O emissions were not given in the study, they

were calculated as the total N2O that was emitted during the

entire measurement period divided by the length of the mea-

surement period or adjusted to 1 year, respectively. This was

done to produce a consistent set of N2O emission data for com-

parison between studies with different lengths of measurement

periods. Cumulated N2O emissions where calculated if neces-

sary by linear interpolation between measurement events.

Fertilizer related N2O emissions (FRE in %) were calculated

as the percentage of fertilizer N (in kg N ha�1 yr�1) that was

lost as N2O (in kg N2O-N ha�1 yr�1). The background N2O

emissions of unfertilized plots were not accounted for. Thus,

the FRE is an approximation of the fertilizer induced N2O

emissions. It serves for comparisons of different sites and fertil-

izer levels in our dataset but the comparison with the IPCC EF

for managed soils is not directly possible. In the IPCC

approach, also N inputs by crop residues or by mineralization

are separately accounted for while in FRE the N2O emissions

are entirely referred to the only considered N input, the N fer-

tilizer input.

For all sites with available yield data, the yield-scaled N2O

emissions were calculated as annual N2O emissions divided by

rape seed yield. The respective N surplus was calculated as N

addition by fertilizer minus N withdrawn by harvested rape-

seed. Where data regarding N contents of the rapeseeds and

rape residues were missing, a dry matter content of 91% for

seeds and 86% for straw and N concentrations of 22.5 kg

N t�1
fresh in the rapeseed and 7 kg N t�1

fresh in the rape straw

respectively was assumed (D€uV, 2007). The ratio of seeds to

straw dry mass was assumed to be 1 : 1.7 (D€uV, 2007).

Complete data basis and subsets

In total, 36 studies with N2O measurements in oilseed rape at

36 different sites were found, of which 12 studies with 18

measurement years (1 year measured at one site) fulfilled

the quality criteria described above and were used for this

meta-analysis (Table 1). Due to different fertilization levels and

treatments that were not explicitly considered in this evalua-

tion (crop rotation, tillage and compaction), a total of 43 data

points with annual N2O emissions could be obtained (Table S1

in Data S1). The Stehfest & Bouwman (2006) dataset was there-

fore increased by more than 200% with respect to winter oil-

seed rape-specific data that derived from measurements longer

than 300 days.

This set of 43 data points (subset 1) was further reduced to

subsets corresponding to the different research questions. For

the comparison of N2O emissions from rape to those from cere-

als the dataset was limited to studies with simultaneous mea-

surements in winter oilseed rape and winter cereals at the

same site (subset 2). Subset 2 included seven sites with 12 mea-

surement years (31 and 46 data points for rape and cereals,

respectively). The reference cereal crops were rye, wheat and

barley, all cultivated as winter crops. In subset 3, those studies

of subset 2 were compiled where annual N2O emissions were

divisible into N2O emitted in the main growing season and

N2O emitted in postharvest autumn and winter (five sites,

eight measurement years or 22 and 24 data points for rape and

cereals, respectively).

All considered studies were conducted on mineral soils in

the temperate climate zone and only mineral fertilizer was

used with an application range from zero to 293 kg
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N ha�1 yr�1. Five of the studies included an unfertilized rape

treatment. Different N-fertilizer rates were involved in 5 stud-

ies. The texture classes ranged from medium to coarse, the pH

classes from medium to high and the SOC classes from low to

medium. Yield information was available for 8 sites and a total

of 12 measurement years. The main reason to exclude results

on N2O emission from rape from our evaluation was the insuf-

ficient length of measurement period.

Statistics

Prior to statistical evaluations, the N2O emission data were

log10-transformed. This was done to enable comparisons with

previous N2O emission reviews and models that used log-

transformed N2O emission data (Stehfest & Bouwman, 2006;

Rees et al., 2013) and to achieve homoscedasticity of model

residuals. The R software environment (version R-3.0.2, R core

team, 2013) and in particular the lme4 (package version 1.1-6,

Bates et al., 2014) was used to fit linear mixed effects models

for annual N2O emissions of rape. The study site and year of

measurement were included as random factors. While it was

sufficient to include a random intercept for the factor ‘site’, a

random intercept and slope for the factor ‘year’ resulted in the

best model according to Akaike0s information criterion (AIC).

Nitrogen fertilization rate, soil parameter classes (pH, texture

and SOC concentration), and climate parameter (precipitation

and mean annual temperature) as well as the distinction

between balance periods with winter emissions before and

those after rape harvest were tested as fixed factors influenc-

ing the annual N2O emissions. Additionally, the differentia-

tion into N2O emissions from rape or cereals was tested as

fixed factor for examining the crop-type effect on annual

N2O emissions. The respective best models were selected

using the AIC.

Regarding evaluations of N2O emissions in the period after

harvest, linear mixed effects models were fitted with mean

N2O emission data of the period after harvest as related to

mean annual N2O emissions. Here, the interaction of site and

measurement year was included as the only random effect. If

emissions are assumed to be always positive, no intercept will

occur here. The fit was therefore forced through the origin and

the random effect was only influencing the slope of the model

fit. Also for this model, fertilization rate and crop type were

tested as additional fixed effects.

The 95% confidence intervals for the identified fixed effects

were calculated and for the best fits R² were calculated as the

quadratic correlation coefficient between modeled and mea-

sured log-transformed N2O emissions.

A segmented linear model (Muggeo, 2003) was fit to

describe the dependency of yield-scaled N2O emissions

(square-root transformed) on the N surplus data using R

package segmented (Muggeo, 2008). Such models describe

‘broken-line’ relationships, which can occur due to a change in

underlying processes. Because of the very limited data, the

potential influence of sites was neglected for this and observa-

tions were assumed to be independent.

Results and discussion

Rape-specific N2O emission

The annual N2O emission of rape varied widely

between study sites, N fertilizer rates and years

Table 1 Site characteristics of included studies: MAP: mean annual precipitation, MAT: mean annual temperature, Corg: soil organic

carbon concentration in topsoil

Site Country Latitude Longitude

MAP

(mm)

MAT

(°C) pH

Corg

(%)

Clay

(%)

Silt

(%)

Sand

(%) Reference

Bandow Germany 53.92 12.02 590 8.2 6.2 0.85 NA NA NA (Schulz &

Schumann, 2004)

Canstein Germany 51.38 8.90 670 7.6 7.3 1.10 21 44 35 (Teepe et al., 2000)

Chalons France 48.95 2.42 629* 10* 8.1 1.67 31 41 28 (Henault et al., 1998)

Gauna Spain 42.82 �2.48 782* 11.4* 7.6 1.12 31.2 25.2 43.6 (Merino et al., 2012)

G€ottingen Germany 51.53 9.98 634 8.7 7.5 1.60 3 60.4 36.6 (Schm€adeke, 1998;

Schm€adeke et al., 1998)

Grignon France 48.90 1.90 646* 9* 8.2 1.80 25.7 66.6 7.7 (Jeuffroy et al., 2013)

Lincolnshire United

Kingdom

53.32 �0.57 605 9.8 6.4 1.48 15 32 53 (Drewer et al., 2012)

North

Berwick

United

Kingdom

56.05 �2.72 611 9.4* 6.5 1.90 NA NA NA (Ball et al., 1999)

Potsdam Germany 52.42 12.98 595 8.6 6.0 0.90 6.2 61.2 32.6 (Kavdir et al., 2008;

Hellebrand et al., 2010)

Rostock Germany 54.08 12.10 593 8.1 6.5 0.85 NA NA NA (Leidel, 2000;

Leidel et al., 2000)

Timmerlah Germany 52.28 10.45 638 8.7 7.4 0.94 10 85 5 (Kaiser et al., 1998)

V€olkenrode Germany 52.28 10.45 619 8.9 5.7 0.88 8 47 45 (Kohrs, 1999)

*At weather stations closest to the respective study sites, obtained from DWD (2014) and weatherbase (weatherbase, 2014).

NA, not available.
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(0.3–5.7 kg N ha�1 yr�1) and FRE ranged between 0.2%

and 5.1%. Despite this large variability in FRE, N-fertil-

ization rate was detected as significant factor for the

N2O emission, when site and year were included as ran-

dom effects in the mixed effects model (Fig. 1; Table 2).

Most of the data0s variability was explained by these

random effects as illustrated by the large difference

between the R2s of the complete best mixed effects

model (R² = 0.92) and the one of the model without con-

sideration of random effects (R² = 0.11). The strong

influence of different sites on the rape-specific N2O

emission model is also illustrated by the span of colored

lines that represent model predictions of the respective

sites in Fig. 1a. As the respective depiction of the mea-

surement years’ random effect shows (Fig. 1b), the site’s

influence on N2O emission and on the response to N

fertilization greatly varies between years.

The model’s fixed intercept indicates a mean emission

of 0.82 kg N2O-N ha�1 yr�1 for unfertilized rape fields.

An annual fertilization of 100 kg N ha�1 results in an

additional, fertilizer induced N2O emission of 0.54 kg

N2O-N ha�1 yr�1. Because of the exponential relation-

ship, N2O emissions increase fast with higher fertiliza-

tion rates. For rape fields fertilized with 200 kg

N ha�1 yr�1, the additional N2O emission of 1.44 kg

N2O-N ha�1 yr�1 or a total of 2.26 kg N2O-N ha�1 yr�1

is predicted by this model. Hence, N application rate as

the most important management-related factor influenc-

ing N2O emissions from cropland (Bouwman et al.,

2002) is in particular applicable for rape because of its

typically high N-fertilization rates. While the IPCC EF

does not change with N-fertilization rates, several stud-

ies have already shown that the response of N2O emis-

sion to N addition follows an exponential trend (Kaiser

& Ruser, 2000; Stehfest & Bouwman, 2006; Van Groeni-

gen et al., 2010). For maize grown in the temperate

humid climate Grant et al. (2006) explained the

observed nonlinearly increasing N2O emissions with ris-

ing residual soil mineral N levels, indicating that N

input was exceeding crop demand. This was in turn

made responsible for the sharply increasing N2O emis-

sions.

As observed in several studies with different arable

crops (Kim et al., 2013; Rees et al., 2013) the N2O emis-

sions from unfertilized plots were also substantial for

rape in some of the studies in our dataset. The highest

emissions of N2O among the unfertilized rape fields

were measured at the Timmerlah study site. Here,

3.2 kg N2O-N ha�1 yr�1 were emitted in 1996, which

was the third year after establishment of differently fer-

tilized research plots (Heinemeyer et al., 1998; Kaiser

et al., 1998). The respective emissions from the plot with

172 kg N ha�1 yr�1 fertilization at this site were 4.0 kg

N2O-N ha�1 yr�1. Kaiser et al. (1998) explained the high

N2O emissions from the treatment without fertilization

with the soil0s potential to provide N that was still high

after many years of substantial fertilization. Correspond-

ingly, the zero and reduced fertilization treatments
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site (a) and measurement years (b) specific variation in the model.
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showed relatively high soil nitrate contents. It is

expected, that the differences in N2O emissions and soil

nitrate contents between the plots will increase after

some more years without fertilizer application. It was

apparent in Potsdam in 2002, when summer precipita-

tion was high that wet soil conditions may cause high

N2O emission from fertilized as well as unfertilized

plots. This further demonstrates the importance of inter-

annual variability which may potentially superimpose

the effect of additional driving variables.

It is well known that N2O emissions exhibit a large

variability due to interannual changes in climatic condi-

tions (Rees et al., 2013) and site-specific differences in

soil and climate parameters (Jungkunst et al., 2006;

Flechard et al., 2007). However, neither the inclusion of

climate variables nor the consideration of soil parameter

classes (pH, texture or SOC) as fixed effects improved

the model performance in our study. This may be due

to the limited data basis and the fact that there was too

little variation in soil parameter classes or climatic con-

ditions in the data. However, the dataset0s narrow range

of site conditions results from winter oilseed rape being

cultivated under climatic and soil conditions that create

favorable economic yield in competition to other crops

so we believe we included the range of current potential

conditions under which oilseed rape is grown. These

specific conditions are also reflected by the site selection

of the published studies.

At the site-level the relation of N2O emissions with

climate variables is more evident. Jeuffroy et al. (2013)

showed that the generally low N2O emissions from the

Grignon site in France with different crop rotations

including rape were a result of the low rainfall, espe-

cially after fertilization. At this generally low N2O emit-

ting site, no effect of the crop rotation or fertilization

levels could be identified. Substantial differences

between two different years0 FRE from rape with the

same tillage treatment in Bandow, Germany, were

explained by climatic differences between the years

(Schulz & Schumann, 2004). High precipitation with

abrupt rewetting of the soil in summer and pronounced

freeze-thaw cycles in winter resulted in up to 3.5 times

higher N2O emissions from rape in 2002/2003 as com-

pared to the 2003/2004 cropping season.

Rape seed yield and N2O emissions

Yield-scaled N2O emissions from rape were also highly

variable (0.09–53.3 kg N2O-N Mg�1
dm; with a median of

2.7 kg N2O-N Mg�1
dm). Not only N2O emissions were

very site specific but also the yield response to N fertil-

ization is typically dependent on site parameters like

the climatic yield potential and the soil0s ability to sup-

ply additional N (Dobermann & Cassman, 2002).T
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However, the extreme value of 53.3 kg N2O-N Mg�1
dm

at site Timmerlah in 1995 was excluded from further

evaluation due to the unrealistic low yield (0.09 Mgdm)

at the unfertilized rape plot. Relating yield-scaled N2O

emissions to the N surplus as a measure for the N use

efficiency showed that the risk of high yield-scaled N2O

emissions increased at N surplus values of 45 � 24 kg

N ha�1 yr�1 (Fig. 2). This is consistent with Van Groeni-

gen et al. (2010) who showed that yield-scaled N2O

emissions rapidly increase beyond a certain threshold of

N surplus. However, our results propose a lower

threshold for rape than for the collection of different

non-leguminous annual crops (90 kg N ha�1 yr�1; Van

Groenigen et al., 2010). Higher yields also imply larger

amounts of N taken up by the plants (Dobermann &

Cassman, 2004). As a consequence, soil mineral N avail-

able for N2O production during the growing period

decreases with increasing yields for a constant N-fertil-

ization rate. Yield-scaled N2O emissions did increase

with increasing N surplus in the growing period but

not in the postharvest period (data not shown) when

other factors influence N2O emissions to a greater

extend. Van Groenigen et al. (2010) showed by means of

data derived from measurements mainly in the growing

season that yield-scaled N2O emissions were negatively

correlated with N use efficiency. Due to the particularly

high N-fertilization rates of oilseed rape and the low N

use efficiency the fertilization management is a key

issue to reduce RME GHG emissions. Thus, high N sur-

plus during the growing period should be avoided by

adjusting N-fertilization rates for the release of mineral

N from decomposition of organic matter and by adapt-

ing the timing of N fertilization to the crop’s demand.

Direct comparison of N2O emissions of rape and cereals

We found significantly (P < 0.01) higher N2O emissions

from rape as compared to cereals (Fig. 3; Table 2)

despite a reduced dataset of only 7 sites with simulta-

neous N2O emission measurements from rape and cere-

als. The annual N2O emissions of unfertilized rape

predicted by this model for subset 2 (0.75 kg N2O-N,

95% confidence interval ranging from 0.25 to 2.25 kg

N2O-N ha�1 yr�1) were in the same range as those pre-

dicted for unfertilized cereals (0.62 kg N2O-

N ha�1 yr�1, 95% confidence interval ranging from 0.24

to 1.72 kg N2O-N ha�1 yr�1). A higher N fertilizer addi-

tion to rape has a particular influence on N2O emissions

due to the exponential relationship between fertilization

and N2O emissions. However, the differentiation by

crop type was additive to fertilizer influence in our

model and is therefore independent from the fertiliza-

tion rate. Rape fields were predicted to emit 22% (95%

confidence interval ranging: 6–41%) more N2O-N than

land cropped with cereals fertilized at the same rate as

rape. At N fertilizer level of 100 kg N ha�1 yr�1 the

absolute difference was 0.25 kg N2O-N ha�1 yr�1 and

due to the exponential shape of the model it increased

to 0.46 kg N2O-N ha�1 yr�1 at a fertilization level of

200 kg ha�1 yr�1. Hence, the reasons for this crop-spe-

cific difference are beyond N fertilizer rates and might

originate from differences in postharvest N2O emis-

sions.

Depicting FREs (Fig. 4, median of all sites and years:

1.35% for cereals and 1.53% for rape, respectively), the

difference between crops is not as apparent as from the

model results but still visible. For the calculation of

FREs, as for IPCC EF, a linear relationship between N2O

emissions and N fertilization is assumed which appears

to be less appropriate than an exponential model. Also

other controls of N2O emission captured by the mixed

effects models, especially the strong intersite and inter-

annual variation, were neglected and confound the

crop-specific evaluation of FREs.

V€olkenrode in Northern Germany was the only site

within subset 2, where N2O emissions of the cereal plots

exceeded those of the rape plot (Fig. 4). Even N2O emis-

sions from the unfertilized cereal plot were as high

as those from rape that received 220 kg N ha�1 yr�1

(Kohrs, 1999). Because the measurement period of N2O
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emissions was from sowing to harvest at this site, the

annual N2O emissions of rape and wheat included win-

ter N2O emissions that were characterized by residues

of the previous crops, winter wheat and sugar beet,

respectively and the N uptake dynamics of young rape

and wheat. However, the resulting difference in winter

N2O emissions from rape and wheat (Kaiser et al., 1998)

only partly explained the higher annual N2O emissions

of wheat at this research site with a long but varying

history of fertilization studies.

Additionally tested fixed factors for soil properties or

climate variables had no significant influence on the

model performance possibly due to the small number of

studies in this dataset. In the general N2O emission

model for agricultural fields from Stehfest & Bouwman

(2006) that was fitted on a much more comprehensive

data basis, all soil parameter classes were included as

factors with significant influence.

Comparing our model to the Stehfest & Bouwman

approach showed that our predictions for cereals are

similar to the Stehfest & Bouwman prediction for N2O

emissions from cereal fields with soil properties as they

are predominant in our dataset (Fig. 3). However, much

higher N2O emissions were predicted by the Stehfest &

Bouwman (2006) model for ‘other’ crops which include

rape as compared to our mean predicted N2O emissions

for rape. In addition to rape, also crops with high N2O

emissions like vegetables (Dobbie et al., 1999; Pfab et al.,

2011) and potatoes (Ruser et al., 1998; Snowdon et al.,

2013), were grouped in the crop-type class ‘other’. If

only rape studies with a measurement length of more

than 300 days in the Stehfest & Bouwman dataset are

regarded, the median FRE turns out to be 1.58% which

is very close to the median FRE of our dataset (1.53%).

The classification of rape as ‘other’ crop should there-

fore be reconsidered. Nevertheless, the aggregation with

cereals as it is done for GNOC (JRC, 2013) would lead

to an underestimation of N2O emissions from rape as

shown by our direct comparison of N2O emissions of

rape and cereals.

Postharvest N2O emissions

To identify the main periods with higher N2O emissions

from rape compared with cereals we partitioned the

N2O emissions into two periods, the growing season and

the postharvest period. The postharvest N2O emissions

of rape (median of all sites and years: 21 lg N m�2 h�1)

tended to be higher than N2O emissions in the growing

season (median of all sites and years: 18 lg N m�2 h�1).

Regarding cereals, there is an opposite trend (median

after harvest: 10 lg N m�2 h�1 and during the growing

season: 16 lg N m�2 h�1). When substantial intersite

and interyear variability is accounted for in the linear
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mixed effects model, the influence of crop type on the

dependency of postharvest N2O emission on mean

annual N2O emission was significant (Fig. 5; Table 2).

The direct impact of N fertilization on N2O emissions

is largest shortly after its application (Kaiser & Heine-

meyer, 1996; Drewer et al., 2012). The postharvest N2O

emissions of most crops were found to be rather residue-

driven than dependent on N-fertilization rates (Kaiser

et al., 1998). However, the amount of crop residues and

therefore the amount of N added to the soil with crop

residues is influenced by the N fertilization (Trinsoutrot

et al., 2000). Consequentially, the influence of fertilization

rate on the relationship of postharvest to annual N2O

emissions is negligible as our results showed. At the time

of rape harvest, the direct influence of the N fertilizer

rate on soil mineral N contents is negligible (Schm€adeke

et al., 1998). However, differences in residual soil mineral

N between crop types may exist (Beaudoin et al., 2005;

Gan et al., 2012) due to different N uptake dynamics.

In Potsdam, rape yields were higher in the wetter

year 2002 than in the dry year 2003. As a result, more N

was added to the field as crop residues in 2002. Because

the winter 2002/03 was also characterized by more

freeze-thaw cycles than the winter 2003/04 (Kavdir

et al., 2008) more N2O was emitted from the fields after

rape cultivation in winter 2002/03 than in winter 2003/
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04. Remarkably, the difference between postharvest

N2O emission between rape and cereal in Potsdam was

also largest in 2002.

The differences in N contents and structure of crop

residues from cereals and rape (Kaiser et al., 1998), C : N

ratios (Novoa & Tejeda, 2006) imply different degrada-

bility. The amount of mineral N that is available for N2O

production after harvest therefore differs greatly among

these two crop types. The oxygen consumption during

decomposition may lead to anoxic conditions that stimu-

late N2O production via denitrification, underlining the

importance of crop residue mineralization on N2O pro-

duction. Novoa & Tejeda (2006) showed in a meta-analy-

sis of cropland N2O emissions due to crop residues that

the N content in crop residues significantly influenced

N2O emissions. Dry matter-to-N-content ratio and the

C : N ratio of the crop residues were found to be good

predictors for the postharvest N2O emission (Kaiser

et al., 1998; Baggs et al., 2000). Another good predictor

for N2O emissions from crop residues is the mineraliz-

able N content in crop residues which accounted for up

to 74% of the variance in N2O emission from a sandy soil

amended with different crop residues (Velthof et al.,

2002). However, the best predictor for winter N2O emis-

sions seems to be the nitrate content in topsoil during

winter that described more than 90% of the variance of

differently managed cropland soils (Ruser et al., 2001).

The combination of high amounts of N available for N2O

production with freeze-thaw events or high water con-

tents induce particularly high emission peaks in winter

(Flessa et al., 1995; Kaiser & Ruser, 2000). Nevertheless,

soil mineral N appears to be the driving factor for the

observed difference between crop types.

If measurements shorter than 300 days were included

in the consideration of the relation of postharvest to

annual N2O emissions, the variation became wider (data

not shown). The tendency to extreme values for those

datasets that include only a short time after harvest (Hena-

ult et al., 1998; Ball et al., 1999; Pennock & Corre, 2001)

may arise from potentially missed or over proportionally

accounted for N2O emission peaks such as those in the

freeze-thaw periods and shortly after harvest. This particu-

larly illustrates the risk of under- or overestimation by

short-term emission measurements and emphasizes the

need of frequent measurements for at least one entire year.

Effects of agricultural management on rape N2O
emissions

Timing of fertilization and N uptake of the different

crops play an important role regarding the differences

in N2O emission dynamics between crop rotations and

different managements. In general timing and amount

of N fertilization should match crop N demand and

take into account net release of mineral N from decom-

position of organic matter. Even though rape has the

ability to take up relatively high amounts of N in

autumn (Barraclough, 1989), yield effects of autumn fer-

tilization could not be affirmed reviewing winter oilseed

rape studies (Sieling & Kage, 2010). The results suggest

that applying the first N fertilization to winter oilseed

rape in spring should be preferred with respect to effi-

cient fertilizer use and reduced N2O emissions. Rape

that was sown in August took up more N as compared

to rape sown in September (Henke et al., 2009), indicating

that the nitrate content during winter may also be

reduced by early sowing. This, however, refers to the win-

ter before rape harvest. As the timing of sowing is gener-

ally determined by the harvest of the previous crop, the

selection of entire crop rotations needs to be considered in

the discussion on soil mineral N during winter.

The most critical period with respect to N2O emis-

sions from rape is the autumn and winter after harvest

(see above). Due to its effects on mineralization and

denitrification, the management of crop residues can

influence postharvest N2O emissions (Malhi et al., 2006).

As discussed above, the incorporation of crop residues

with high N contents increases soil nitrate concentra-

tions and N2O emissions (Kaiser et al., 1998; Baggs et al.,

2000; Velthof et al., 2002). However, removing rape resi-

dues after harvest cannot be recommended as measure

to reduce N2O emissions because the production of N-

rich litter starts already before harvest (i.e., fall of

leaves), no alternative economically sound utilization of

rape straw is established, and from the perspective of N

use efficiency residue N of rape should be efficiently

recycled via uptake by the following crop. Management

options to reduce the risk of high N2O emissions and

nitrate leaching after rape should instead target an effi-

cient and complete use of residual N in the crop rota-

tion. Increased soil mineral N contents after rape

emphasizes the relevance of rape for the N supply of

the successive crop (Shepherd & Sylvesterbradley, 1996)

and its function in crop rotations. At the same time, it

indicates the particular risk of high N losses during

winter after rape cultivation. To minimize N2O emis-

sions after rape the soil mineral N has to be reduced as

fast as possible. It is essential that the remaining plant

available N pool is accounted for in fertilization of the

successive crop (D€uV, 2007).

Henke et al. (2008) suggested noncruciferous catch

crops in combination with reduced tillage to minimize

nitrate leaching after rape. Also volunteer rape reduced

soil mineral N during autumn to a similar extent (Hen-

ke et al., 2008). Hence, it may help to save N for the fol-

lowing main crop and to reduce postharvest N2O

emissions. However, winter catch crops can only be

integrated in rotations if rape is followed by a summer
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crop. Adequate measures to reduce soil mineral N after

rape always needs to be designed and optimized in the

respective crop rotation. The role of entire crop rotations

not only has to be considered in fertilization planning

but also need to be enhanced in N2O emission account-

ing, especially regarding crops like rape that have

longer term impacts on N supply.

Conclusions

Direct annual and especially postharvest N2O emissions

of winter oilseed rape are higher than those of cereals.

This holds also true at same N fertilizer rates. Yet, the

classification of rape as ‘other’ crop in the Stehfest &

Bouwman model is not appropriate because it overesti-

mates N2O emissions from rape. We propose that N2O

emissions from rape should be assessed separately. Our

rape-specific N2O emission model predicts annual emis-

sions of 2.26 kg N2O-N ha�1 yr�1 at a common fertilizer

rate of 200 kg N ha�1 yr�1. Particularly high posthar-

vest N2O emissions suggest that reducing mineral N

contents in autumn and winter is an effective measure

to reduce total N2O emissions from rape. Including the

winter after harvest in the balance period for N2O emis-

sions is crucial. Consideration of entire crop rotations

would result in even more accurate assessments of

rape0s impact on N dynamics and greenhouse gas emis-

sions. For a holistic evaluation of GHG savings by the

use of RME, also indirect emissions need to be consid-

ered. However, the allocation of direct and indirect

GHG emissions to different crops within a rotation

remains a big scientific challenge. For example savings

of N fertilizer or higher yields in crops after rape have

to be accredited to rape. The growing demand for biofu-

els highlights the need for assessing thorough GHG bal-

ances and due to its high global warming potential good

estimates of N2O emissions in particular. Our study

finding casts further doubt on the benefits of RME with

regard to GHG savings, as N2O emissions during rape

production turned out to be particularly high.
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