28 research outputs found

    Emerging Spatio-temporal Hot Spot Analysis of Beijing Subsidence Trend Detection Based on PS-InSAR

    Get PDF
    Scholars have done a lot of research on urban settlement, but it is difficult to give consideration to the temporal and spatial attributes of settlement at the same time in its display and analysis. Most of them focused on the analysis of regional settlement, single point settlement curve and settlement rate map at a certain time, but few combined time and space for collaborative analysis. Therefore, in this paper, 32 scenes Sentinel-1B SAR data are used to obtain settlement data of Beijing via PS-InSAR method. Secondly, combined with the temporal and spatial attributes of settlement results, the subsidence law revealed by using spatio-temporal cube slicing and attribute filtering. Finally, subsidence development trend and the detection of abnormal subsidence are explored by emerging hot spots (ESH) analysis. The experimental results show that the settlement funnel center in Beijing is mainly concentrated near the junction of Chaoyang district and Tongzhou district. The settlement range tends to expand. There are several local continuous subsidence areas in the settlement oscillating area. Spatio-temporal analysis makes the development trend of urban settlement more intuitive. Emerging hotspot analysis combined with Getis-Ord Gi* statistics and Mann-Kendall trend test could more effectively analyze the settlement trend of the study area and detect new potential settlement centers, so that to provide auxiliary decision-making for urban safety early warning and city development

    Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    Full text link
    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species

    The Advancement of Neutron Shielding Materials for the Storage of Spent Nuclear Fuel

    No full text
    With the development of nuclear industry, spent nuclear fuel (SNF) generated from nuclear power plants arouses people’s attention as a result of its high radioactivity, and how to guarantee the reliable operation of nuclear facilities and the staff’s safety occupies a crucial position. To avoid the lethal irradiation, a lot of functional neutron shielding composites have been developed to transform fast neutrons into thermal neutrons which can be absorbed with high macroscopic cross-sectional elements. Irradiation characteristics of nuclear industry have promoted the advancement of neutron shielding materials. Here, we review the latest neutron shielding materials for the storage of spent nuclear fuel containing additives such as boron carbide (B4C), boron nitride (BN), boric acid (H3BO3), and colemanite. Different types of neutron shielding materials, including metal matrix alloys, polymer composites, high density concrete, heavy metals, paraffin, and other neutron shielding composites with high macroscopic cross-sectional elements, arediscussed. The elemental composition, density, and thermal and mechanical properties of neutron shielding materials are also summarized and compared

    Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python

    No full text
    In an offshore operational environment, complex loads such as the hook load, stand load and wind load play a crucial role in the structural strength and reliability of the offshore derrick. Previous studies have mainly focused on the effect of a specific load on the strength of the derrick by using commercial software. Therefore, the influencing mechanism of each complex load on the strength and reliability of the offshore derrick is urgently necessary to explore. Not only is the strength numerical model of the JJ315/45-K typical derrick established and conducted via APDL (ANSYS Parametric Design Language), but also the stress–strength reliability simulation is explored and plotted using Python code and APDL. Furthermore, the influence and contribution of each load to the strength and reliability is determined. With the increase in hook load, the positions of maximum reliability risk appear in section II-1. With the increase in stand load or back wind load, the positions of maximum reliability risk appear in the bottom section. In addition, with the decrease in the columns’ height, the stress proportion of the hook load decreases by 73.5%, the stress proportion of the stand load increases by 22.6%, and the stress proportion of the back wind load changes slightly. When the wind speed is less than 20 m/s, the hook load mainly affects the minimum reliability index of the derrick. Moreover, when the wind speed is more than 20 m/s, the back wind load mainly affects the minimum reliability index of the derrick. This study provides a thorough explanation of the strength distribution law and the reliability of derricks under complex loads

    Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python

    No full text
    In an offshore operational environment, complex loads such as the hook load, stand load and wind load play a crucial role in the structural strength and reliability of the offshore derrick. Previous studies have mainly focused on the effect of a specific load on the strength of the derrick by using commercial software. Therefore, the influencing mechanism of each complex load on the strength and reliability of the offshore derrick is urgently necessary to explore. Not only is the strength numerical model of the JJ315/45-K typical derrick established and conducted via APDL (ANSYS Parametric Design Language), but also the stress–strength reliability simulation is explored and plotted using Python code and APDL. Furthermore, the influence and contribution of each load to the strength and reliability is determined. With the increase in hook load, the positions of maximum reliability risk appear in section II-1. With the increase in stand load or back wind load, the positions of maximum reliability risk appear in the bottom section. In addition, with the decrease in the columns’ height, the stress proportion of the hook load decreases by 73.5%, the stress proportion of the stand load increases by 22.6%, and the stress proportion of the back wind load changes slightly. When the wind speed is less than 20 m/s, the hook load mainly affects the minimum reliability index of the derrick. Moreover, when the wind speed is more than 20 m/s, the back wind load mainly affects the minimum reliability index of the derrick. This study provides a thorough explanation of the strength distribution law and the reliability of derricks under complex loads

    Recent Advances in Polymer Flooding in China

    No full text
    Polymer flooding is drawing lots of attention because of the technical maturity in some reservoirs. The first commercial polymer flooding in China was performed in the Daqing oilfield and is one of the largest applications in the world. Some laboratory tests from Daqing researchers in China showed that the viscoelasticity of high molecular weight polymers plays a significant role in increasing displacement efficiency. Hence, encouraged by the conventional field applications and new findings on the viscoelasticity effect of polymers on residual oil saturation (ROS), some high-concentration high-molecular-weight (HCHMW) polymer-flooding field tests have been conducted. Although some field tests were well-documented, subsequent progress was seldom reported. It was recently reported that HCHMW has a limited application in Daqing, which does not agree with observations from laboratory core flooding and early field tests. However, the cause of this discrepancy is unclear. Thus, a systematic summary of polymer-flooding mechanisms and field tests in China is necessary. This paper explained why HCHMW is not widely used when considering new understandings of polymer-flooding mechanisms. Different opinions on the viscoelasticity effect of polymers on ROS reduction were critically reviewed. Other mechanisms of polymer flooding, such as wettability change and gravity stability effect, were discussed with regard to widely reported laboratory tests, which were explained in terms of the viscoelasticity effects of polymers on ROS. Recent findings from Chinese field tests were also summarized. Salt-resistance polymers (SRPs) with good economic performance using produced water to prepare polymer solutions were very economically and environmentally promising. Notable progress in SRP flooding and new amphiphilic polymer field tests in China were summarized, and lessons learned were given. Formation blockage, represented by high injection pressure and produced productivity ability, was reported in several oil fields due to misunderstanding of polymers’ injectivity. Although the influence of viscoelastic polymers on reservoir conditions is unknown, the injection of very viscous polymers to displace medium-to-high viscosity oils is not recommended. This is especially important for old wells that could cause damage. This paper clarified misleading notions on polymer-flooding implementations based on theory and practices in China

    Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis.

    Get PDF
    Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations
    corecore