51 research outputs found

    Source attribution of particulate matter pollution over North China with the adjoint method

    Get PDF
    We quantify the source contributions to surface PM2.5 (fine particulate matter) pollution over North China from January 2013 to 2015 using the GEOS-Chem chemical transport model and its adjoint with improved model horizontal resolution (1/4 degrees x 5/16 degrees) and aqueous-phase chemistry for sulfate production. The adjoint method attributes the PM2.5 pollution to emissions from different source sectors and chemical species at the model resolution. Wintertime surface PM2.5 over Beijing is contributed by emissions of organic carbon (27% of the total source contribution), anthropogenic fine dust (27%), and SO2 (14%), which are mainly from residential and industrial sources, followed by NH3 (13%) primarily from agricultural activities. About half of the Beijing pollution originates from sources outside of the city municipality. Adjoint analyses for other cities in North China all show significant regional pollution transport, supporting a joint regional control policy for effectively mitigating the PM2.5 air pollution.China's National Basic Research Program [2014CB441303]; National Natural Science Foundation of China [41205103, 41475112]SCI(E)[email protected]

    Parameterized Yields of Semivolatile Products from Isoprene Oxidation under Different NO_x Levels: Impacts of Chemical Aging and Wall-Loss of Reactive Gases

    Get PDF
    We developed a parametrizable box model to empirically derive the yields of semivolatile products from VOC oxidation using chamber measurements, while explicitly accounting for the multigenerational chemical aging processes (such as the gas-phase fragmentation and functionalization and aerosol-phase oligomerization and photolysis) under different NO_x levels and the loss of particles and gases to chamber walls. Using the oxidation of isoprene as an example, we showed that the assumptions regarding the NO_x-sensitive, multigenerational aging processes of VOC oxidation products have large impacts on the parametrized product yields and SOA formation. We derived sets of semivolatile product yields from isoprene oxidation under different NO_x levels. However, we stress that these product yields must be used in conjunction with the corresponding multigenerational aging schemes in chemical transport models. As more mechanistic insights regarding SOA formation from VOC oxidation emerge, our box model can be expanded to include more explicit chemical aging processes and help ultimately bridge the gap between the process-based understanding of SOA formation from VOC oxidation and the bulk-yield parametrizations used in chemical transport models

    Sensitivities of Ozone Air Pollution in the Beijing-Tianjin-Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling

    Get PDF
    Effective mitigation of surface ozone pollution entails detailed knowledge of the contributing precursors' sources. We use the GEOS-Chem adjoint model to analyze the precursors contributing to surface ozone in the Beijing-Tianjin-Hebei area (BTH) of China on days of different ozone pollution severities in June 2019. We find that BTH ozone on heavily polluted days is sensitive to local emissions, as well as to precursors emitted from the provinces south of BTH (Shandong, Henan, and Jiangsu, collectively the SHJ area). Heavy ozone pollution in BTH can be mitigated effectively by reducing NOx (from industrial processes and transportation), ≥C3 alkenes (from on-road gasoline vehicles and industrial processes), and xylenes (from paint use) emitted from both BTH and SHJ, as well as by reducing CO (from industrial processes, transportation, and power generation) and ≥C4 alkanes (from industrial processes, paint and solvent use, and on-road gasoline vehicles) emissions from SHJ. In addition, reduction of NOx, xylene, and ≥C3 alkene emissions within BTH would effectively decrease the number of BTH ozone-exceedance days. Our analysis pinpoint the key areas and activities for locally and regionally coordinated emission control efforts to improve surface ozone air quality in BTH

    Space-based formaldehyde measurements as constrains on volatile organic compound emissions in east and south Asia and implications for ozone

    Get PDF
    We use a continuous 6-year record (1996–2001) of GOME satellite measurements of formaldehyde (HCHO) columns over east and south Asia to improve regional emission estimates of reactive nonmethane volatile organic compounds (NMVOCs), including isoprene, alkenes, HCHO, and xylenes. Mean monthly HCHO observations are compared to simulated HCHO columns from the GEOS-Chem chemical transport model using state-of-science, “bottom-up” emission inventories from Streets et al. (2003a) for anthropogenic and biomass burning emissions and Guenther et al. (2006) for biogenic emissions (MEGAN). We find that wintertime GOME observations can diagnose anthropogenic reactive NMVOC emissions from China, leading to an estimate 25% higher than Streets et al. (2003a). We attribute the difference to vehicular emissions. The biomass burning source for east and south Asia is almost 5 times the estimate of Streets et al. (2003a). GOME reveals a large source from agricultural burning in the North China Plain in June missing from current inventories. This source may reflect a recent trend toward in-field burning of crop residues as the need for biofuels diminishes. Biogenic isoprene emission in east and south Asia derived from GOME is 56 ± 30 Tg yr−1, similar to 52 Tg yr−1 from MEGAN. We find, however, that MEGAN underestimates emissions in China and overestimates emissions in the tropics. The higher Chinese biogenic and biomass burning emissions revealed by GOME have important implications for ozone pollution. We find 5 to 20 ppb seasonal increases in surface ozone in GEOS-Chem for central and northern China when using GOME-derived versus bottom-up emissions. Our methodology can be adapted for other regions of the world to provide top-down constraints on NMVOC emissions where multiple emission source types overlap in space and time.Earth and Planetary SciencesEngineering and Applied Science
    corecore