7,036 research outputs found

    Visual control of flight speed in Drosophila melanogaster

    Get PDF
    Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a `one-parameter open-loop' paradigm using `TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio–temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio–temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles

    A GaAs-based self-aligned stripe distributed feedback laser

    Get PDF
    We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave

    The Aerodynamics of Free-Flight Maneuvers in Drosophila

    Get PDF
    Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then “replayed” the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects

    Signals from the silent: online predictors of non-success

    Get PDF
    Changes to student funding, in parallel with the introduction of new technologies into teaching and learning, and a blurring of traditional boundaries between full and part time study have brought an increased focus on retention in higher education. As more providers look towards offering online portfolio options, this is likely to increase; with some evidence that drop-out on online-led modules can be higher. As many classroom-based behavioural indicators of student retention are reduced or absent in the online environment, institutions can be slower to understand that students are considering dropping out, with the first indication of problems being when withdrawal takes place. This paper draws on data from online interactions among 3000 students studying an introductory Business Studies module at the Open University to identify early online indicators of potential drop-out. Findings suggest that both erratic interactions, and/or marked reduction in activity level from previously active students are predictors of subsequent withdrawal. Existing demographic data (on age, gender, etc) used by the institution has historically allowed broad ‘at risk’ categories of student to be identified; coupling this information to some of the online behavioural indicators revealed through new tracking technology allows more precise targeting of individuals more promptly than historically. This may potentially change a student support model from reactive to proactive; allowing the institution to offer additional support as soon as such signs emerge which improve student retention. Universities seeking to increase student retention may find early warning of vulnerable students useful in targeting appropriate interventions

    Evolution of hierarchical clustering in the CFHTLS-Wide since z~1

    Full text link
    We present measurements of higher order clustering of galaxies from the latest release of the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS) Wide. We construct a volume-limited sample of galaxies that contains more than one million galaxies in the redshift range 0.2<z<1 distributed over the four independent fields of the CFHTLS. We use a counts in cells technique to measure the variance and the hierarchical moments S_n = /^(n-1) (3<n<5) as a function of redshift and angular scale.The robustness of our measurements if thoroughly tested, and the field-to-field scatter is in very good agreement with analytical predictions. At small scales, corresponding to the highly non-linear regime, we find a suggestion that the hierarchical moments increase with redshift. At large scales, corresponding to the weakly non-linear regime, measurements are fully consistent with perturbation theory predictions for standard LambdaCDM cosmology with a simple linear bias.Comment: 17 pages, 11 figures, submitted to MNRA

    Constraints on Galaxy Bias, Matter Density, and Primordial Non--Gausianity from the PSCz Galaxy Redshift Survey

    Get PDF
    We compute the bispectrum for the \IRAS PSCz catalog and find that the galaxy distribution displays the characteristic signature of gravity. Assuming Gaussian initial conditions, we obtain galaxy biasing parameters 1/b1=1.200.19+0.181/b_1=1.20^{+0.18}_{-0.19} and b2/b12=0.42±0.19b_2/b_1^2=-0.42\pm0.19, with no sign of scale-dependent bias for k0.3k\leq 0.3 h/Mpc. These results impose stringent constraints on non-Gaussian initial conditions. For dimensional scaling models with χN2\chi^2_N statistics, we find N>49, which implies a constraint on primordial skewness B3<0.35B_3<0.35.Comment: 4 pages, 3 embedded figures, uses revtex style file, minor changes to reflect published versio

    Bell inequality and the locality loophole: Active versus passive switches

    Get PDF
    All experimental tests of the violation of Bell's inequality suffer from some loopholes. We show that the locality loophole is not independent of the detection loophole: in experiments using low efficient detectors, the locality loophole can be closed equivalently using active or passive switches.Comment: 6 pages, 1 figur

    Same but different — pseudo-pectin in the charophytic alga Chlorokybus atmophyticus

    Get PDF
    All land‐plant cell walls possess hemicelluloses, cellulose and anionic pectin. The walls of their cousins, the charophytic algae, exhibit some similarities to land plants’ but also major differences. Charophyte ‘pectins’ are extractable by conventional land‐plant methods, although they differ significantly in composition. Here, we explore ‘pectins’ of an early‐diverging charophyte, Chlorokybus atmophyticus, characterising the anionic polysaccharides that may be comparable to ‘pectins’ in other streptophytes. Chlorokybus ‘pectin’ was anionic and upon acid hydrolysis gave GlcA, GalA and sulphate, plus neutral sugars (Ara≈Glc>Gal>Xyl); Rha was undetectable. Most Gal was the l‐enantiomer. A relatively acid‐resistant disaccharide was characterised as β‐d‐GlcA‐(1→4)‐l‐Gal. Two Chlorokybus ‘pectin’ fractions, separable by anion‐exchange chromatography, had similar sugar compositions but different sulphate‐ester contents. No sugars were released from Chlorokybus ‘pectin’ by several endo‐hydrolases [(1,5)‐α‐l‐arabinanase, (1,4)‐β‐d‐galactanase, (1,4)‐β‐d‐xylanase, endo‐polygalacturonase] and exo‐hydrolases [α‐ and β‐d‐galactosidases, α‐(1,6)‐d‐xylosidase]. ‘Driselase’, which hydrolyses most land‐plant cell wall polysaccharides to mono‐ and disaccharides, released no sugars except traces of starch‐derived Glc. Thus, the Ara, Gal, Xyl and GalA of Chlorokybus ‘pectin’ were not non‐reducing termini with configurations familiar from land‐plant polysaccharides (α‐l‐Araf, α‐ and β‐d‐Galp, α‐ and β‐d‐Xylp and α‐d‐GalpA), nor mid‐chain residues of α‐(1→5)‐l‐arabinan, β‐(1→4)‐d‐galactan, β‐(1→4)‐d‐xylan or α‐(1→4)‐d‐galacturonan. In conclusion, Chlorokybus possesses anionic ‘pectic’ polysaccharides, possibly fulfilling pectic roles but differing fundamentally from land‐plant pectin. Thus, the evolution of land‐plant pectin since the last common ancestor of Chlorokybus and land plants is a long and meandering path involving loss of sulphate, most l‐Gal and most d‐GlcA; re‐configuration of Ara, Xyl and GalA; and gain of Rha
    corecore