92 research outputs found

    Quantifying similarity in animal vocal sequences: Which metric performs best?

    Get PDF
    1. Many animals communicate using sequences of discrete acoustic elements which can be complex, vary in their degree of stereotypy, and are potentially open-ended. Variation in sequences can provide important ecological, behavioural, or evolutionary information about the structure and connectivity of populations, mechanisms for vocal cultural evolution, and the underlying drivers responsible for these processes. Various mathematical techniques have been used to form a realistic approximation of sequence similarity for such tasks. 2. Here, we use both simulated and empirical datasets from animal vocal sequences (rock hyrax, Procavia capensis; humpback whale, Megaptera novaeangliae; bottlenose dolphin, Tursiops truncatus; and Carolina chickadee, Poecile carolinensis) to test which of eight sequence analysis metrics are more likely to reconstruct the information encoded in the sequences, and to test the fidelity of estimation of model parameters, when the sequences are assumed to conform to particular statistical models. 3. Results from the simulated data indicated that multiple metrics were equally successful in reconstructing the information encoded in the sequences of simulated individuals (Markov chains, n-gram models, repeat distribution, and edit distance), and data generated by different stochastic processes (entropy rate and n-grams). However, the string edit (Levenshtein) distance performed consistently and significantly better than all other tested metrics (including entropy, Markov chains, n-grams, mutual information) for all empirical datasets, despite being less commonly used in the field of animal acoustic communication. 4. The Levenshtein distance metric provides a robust analytical approach that should be considered in the comparison of animal acoustic sequences in preference to other commonly employed techniques (such as Markov chains, hidden Markov models, or Shannon entropy). The recent discovery that non-Markovian vocal sequences may be more common in animal communication than previously thought, provides a rich area for future research that requires non-Markovian based analysis techniques to investigate animal grammars and potentially the origin of human language.We thank Melinda Rekdahl, Todd Freeberg and his graduate students, Amiyaal Ilany, Elizabeth Hobson, and Jessica Crance for providing comments of on a previous version of this manuscript. We thank Mike Noad, Melinda Rekdahl, and Claire Garrigue for assistance with humpback whale song collection and initial categorisation of the song, Vincent Janik and Laela Sayigh for assistance with signature whistle collection, Todd Freeberg with chickadee recordings, and Eli Geffen and Amiyaal Ilany for assistance with hyrax song collection and analysis. E.C.G is supported by a Newton International Fellowship. Part of this work was conducted while E.C.G. was supported by a National Research Council (National Academy of Sciences) Postdoctoral Fellowship at the National Marine Mammal Laboratory, AFSC, NMFS, NOAA. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. We would also like to thank Randall Wells and the Sarasota Dolphin Research Program for the opportunity to record the Sarasota dolphins, where data were collected under a series of National Marine Fisheries Service Scientific Research Permits issued to Randall Wells. A.K. is supported by the Herchel Smith Postdoctoral Fellowship Fund. Part of this work was conducted while A.K. was a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/2041-210X.1243

    Information theory analysis of Australian humpback whale song

    Get PDF
    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). “Information entropy of humpback whale song,” J. Acoust. Soc. Am. 119, 1849–1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). “Songs of humpback whales,” Science 173, 587–597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976–1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs

    Emissions pathways, climate change, and impacts on California

    Get PDF
    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California’s water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades

    The evolutionary roots of creativity: mechanisms and motivations

    Get PDF
    Funding: MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered ‘creative’? This entails analysis of ‘creativity’, an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and ‘creative’ ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called ‘creative’. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so.PostprintPeer reviewe

    The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy

    Get PDF
    http://www.sciencedirect.com/science/journal/14693062Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better understanding of the full climate system. Acknowledging the importance of land surface change as a component of climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to environmental change and variability
    corecore