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SUMMARY 15 

1. Many animals communicate using sequences of discrete acoustic elements which can be complex, 16 

vary in their degree of stereotypy, and are potentially open-ended. Variation in sequences can 17 

provide important ecological, behavioural, or evolutionary information about the structure and 18 

connectivity of populations, mechanisms for vocal cultural evolution, and the underlying drivers 19 

responsible for these processes. Various mathematical techniques have been used to form a 20 

realistic approximation of sequence similarity for such tasks.  21 

2. Here, we use both simulated and empirical datasets from animal vocal sequences (rock hyrax, 22 

Procavia capensis; humpback whale, Megaptera novaeangliae; bottlenose dolphin, Tursiops 23 

truncatus; and Carolina chickadee, Poecile carolinensis) to test which of eight sequence analysis 24 

metrics are more likely to reconstruct the information encoded in the sequences, and to test the 25 

fidelity of estimation of model parameters, when the sequences are assumed to conform to 26 

particular statistical models.  27 

3. Results from the simulated data indicated that multiple metrics were equally successful in 28 

reconstructing the information encoded in the sequences of simulated individuals (Markov chains, 29 

n-gram models, repeat distribution, and edit distance), and data generated by different stochastic 30 

processes (entropy rate and n-grams). However, the string edit (Levenshtein) distance performed 31 

consistently and significantly better than all other tested metrics (including entropy, Markov 32 

chains, n-grams, mutual information) for all empirical datasets, despite being less commonly used 33 

in the field of animal acoustic communication.  34 

4. The Levenshtein distance metric provides a robust analytical approach that should be considered 35 

in the comparison of animal acoustic sequences in preference to other commonly employed 36 

techniques (such as Markov chains, hidden Markov models, or Shannon entropy). The recent 37 

discovery that non-Markovian vocal sequences may be more common in animal communication 38 

than previously thought, provides a rich area for future research that requires non-Markovian 39 

based analysis techniques to investigate animal grammars and potentially the origin of human 40 

language. 41 
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INTRODUCTION 43 

Many animals communicate using sequences of discrete acoustic elements, the best known example 44 

being bird song, which is composed of multiple notes combined in a distinctive order. These 45 

sequences are often complex, non-stereotyped, and potentially open-ended; that is, individuals may 46 

use an almost unlimited repertoire of sequences by making subtle or large variations to the order of 47 

notes (reviewed in Catchpole & Slater 2003). The role of such sequences varies among species. In 48 

some cases, sequences appear to advertise male quality through sequence complexity, e.g., in marsh 49 

warblers, Acrocephalus palustris (Darolová et al. 2012); zebra finches, Taeniopygia guttata (Holveck 50 

et al. 2008; Neubauer 1999; Searcy & Andersson 1986); and song sparrows, Melospiza melodia (Pfaff 51 

et al. 2007). In other cases, researchers have proposed that sequences contain detailed communicative 52 

information such as individual identity, e.g., bottlenose dolphins, Tursiops truncatus (Sayigh et al. 53 

1999). It is also possible that in some species, acoustic sequences are essentially stochastic with little 54 

significance to their precise composition. 55 

Identifying the role of acoustic sequences in a particular species often involves comparing sequences 56 

within and between individuals, as well as within and between populations, so that the nature of the 57 

variation can be quantified and potentially correlated to ecological or behavioural factors. The task of 58 

comparing acoustic sequences presumes an unequivocal and globally relevant measure of sequence 59 

similarity, or difference. However, in practice, no such metric exists. It could be postulated that a 60 

measure of sequence similarity should reflect the proximal processes taking place in the brains of 61 

intended conspecific signal receivers; i.e., the best measure of sequence similarity is the one used by 62 

the animal itself (Kershenbaum et al. 2014). Given that such knowledge is essentially hidden in 63 

practice, various mathematical techniques have been used to form a realistic approximation of signal 64 

similarity (Ashby & Perrin 1988; Navarro 2001; Ranjard 2010; Young & Hamer 1994). It is possible 65 

to categorise similarity measures into two distinct approaches. Firstly, it is usually possible to 66 

characterise a sequence by measuring a small number of metrics that are inherent to the sequence 67 

itself; examples of this include length, or entropy (Freeberg & Lucas 2012). Sequences can then be 68 

compared by calculating the sum of square differences between each of these metrics. This is 69 
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equivalent to representing each sequence as a “feature vector” in some relatively compact feature 70 

space, and measuring the distance between two sequences as the Euclidean distance between their two 71 

feature vectors. While this method is straightforward, there is an assumption that it is possible to 72 

represent every sequence in a compact way, i.e., that some sufficiently large combination of metrics 73 

can "summarise" the properties of a sequence in a biologically meaningful way. However, it is far 74 

from clear that there exists a compact, yet exact, mathematical representation of a sequence, short of 75 

the trivial task of writing down the entire sequence of elements and attempting to measure the 76 

Euclidean distance between the full representations of two sequences, which is unlikely to produce the 77 

desired results. An alternative approach is to use aggregate techniques that measure properties of a 78 

large number of sequences, and summarise the characteristics of a corpus. For example, sequence 79 

transition tables and element frequency histograms have been used in previous studies (Jin & 80 

Kozhevnikov 2011). In these cases, each vector in feature space represents a collection of sequences, 81 

and the Euclidean distance between vectors measures the difference between the sequences from two 82 

sets of vocalisations, rather than between individual sequences. However, it is questionable whether 83 

any of these techniques, individual or aggregate, can represent the nature of the sequences with 84 

adequate fidelity. Since we do not know what cognitive processes an animal uses to interpret such 85 

sequences, we cannot be sure that any particular summary metric accurately reflects the interpretation 86 

of the sequence by the receiving individual. We refer to all of these above metrics as “unary”, as they 87 

are derived from measurements on each string sequence in isolation, even if distances are eventually 88 

calculated on an aggregate of sequences. 89 

Secondly, it is possible to measure the difference between a pair of sequences directly (Levenshtein 90 

1966), thereby bypassing the construction of a feature space, and generating a series of pairwise 91 

comparisons between sequences. Analysing the sequence of elements in animal vocalisations can be 92 

considered analogous to analysing the sequence of nucleotides in DNA, and some non-aggregate 93 

techniques have been borrowed from the field of bioinformatics to capture the similarity or difference 94 

between two sequences. This approach provides a direct measure of pairwise differences, in the form 95 

of a distance matrix, but without a Euclidean feature space. We refer to these metrics as “binary”, as 96 
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they can only be calculated as a pairwise comparison between exactly two sequences. Binary 97 

difference measures are attractive, as they do not rely on the fidelity of a particular unary metric in 98 

representing the properties of a sequence. Rather, binary metrics are an unequivocal measure of the 99 

similarity/difference between two sequences; although it cannot be assumed that this measure of 100 

similarity is the same as that used by the animal itself in distinguishing between sequences. Such 101 

metrics have long been proposed for the analysis of birdsong (Bradley & Bradly 1983; Ranjard et al. 102 

2010), but have not been widely adopted. One disadvantage of binary metrics is that a number of 103 

common machine learning algorithms often used for clustering the results of similarity analyses (e.g., 104 

k-means, neural networks) rely on data presented as a Euclidean feature space, although there are 105 

exceptions, e.g. Ranjard & Ross (2008). To use such clustering techniques, it would be necessary to 106 

derive a series of feature vectors from the binary metric distance matrix. This can be done using 107 

techniques such as multidimensional scaling or principal component analysis to convert a distance 108 

matrix to feature vectors. 109 

Here, we compare the performance of eight different methods for analysing animal vocal sequences, 110 

using both aggregate statistical metrics and a direct pairwise distance measure. We use simulated and 111 

empirical sequences to test which approach is more likely to reconstruct the information encoded in 112 

the sequences, and to test the fidelity of estimation of model parameters when the sequences are 113 

assumed to conform to particular statistical models. This direct comparison of a number of commonly 114 

employed analytical algorithms provides a comprehensive evaluation of the utility of these 115 

approaches to real-world data sets, and demonstrates the utility of comparing at least two different 116 

methods when assessing novel algorithms to ensure that results are robust under a range of analytical 117 

approaches.  118 

 119 

METHODS 120 

We performed two sets of tests (viz. artificial and empirical) to evaluate the performance of each 121 

metric. In the first tests, we generated artificial random sequences and used the different similarity 122 
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metrics to reconstruct the parameters used to generate these sequences, and the stochastic model 123 

types. In the second set of tests, we analysed recordings of animal vocalisations and used both unary 124 

and binary difference metrics to determine contextual information known to exist in these sequences. 125 

We used the signature whistles of the bottlenose dolphin (Kershenbaum, Sayigh & Janik 2013; Sayigh 126 

et al. 2007; Sayigh et al. 2007), to reconstruct individual identity, and the songs of the rock hyrax, 127 

Procavia capensis (Kershenbaum et al. 2012), the humpback whale, Megaptera novaeangliae 128 

(Garland et al. 2012), and the calls of the Carolina chickadee, Poecile carolinensis (Freeberg 2012), 129 

to reconstruct geographical dialect. In the case of the hyrax, humpback whale, and chickadee, the calls 130 

consisted of a sequence of discrete acoustic elements. In contrast, bottlenose dolphin whistles are 131 

often produced in isolation (rather than as a sequence of whistles); therefore we analysed the sequence 132 

of frequency modulation components (e.g., up, down, constant) within whistles, taking these 133 

modulation components as the acoustic elements (for more details see Kershenbaum, Sayigh & Janik 134 

2013). In both our analysis of artificial sequences, and empirical animal vocal sequences, we evaluate 135 

a number of similarity metrics, both binary and unary. Humpback whale song recordings are held at 136 

the University of Queensland, Australia, and by Operation Cetaces in Noumea, New Caledonia. 137 

Dolphin whistle recordings are held at Woods Hole Oceanographic Institution (see Data Accessibility 138 

section for contact details). Before providing details of the simulation experiments and empirical data 139 

analysis, we describe each of the metrics used. 140 

 141 

Binary metric 142 

Levenshtein distance (LD) 143 

The Levenshtein distance (Levenshtein 1966) is a type of string edit distance metric, as it provides a 144 

quantitative measurement of the difference between two string sequences regardless of string length. 145 

Specifically, the Levenshtein distance measures the minimum number of point operations (additions, 146 

deletions, and substitutions) needed to convert one string into another (Levenshtein 1966). By 147 

comparing the position of elements within a string and calculating the number of changes that it takes 148 
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to change one string into the other, this metric relies more on the sequence of elements and less on the 149 

overall structural pattern. It has been used extensively in other fields, e.g., bioinformatics (Likic 2008) 150 

and text search/retrieve (Reis et al. 2004), and in a small number of previous studies of animal 151 

sequences (e.g., Garland et al. 2012; Garland et al. 2013; Kershenbaum et al. 2012; Krull et al. 2012), 152 

and is related to the better known dynamic time warping algorithm (Buck & Tyack 1993). However, 153 

LD itself remains somewhat unknown in the field of animal acoustic communication. In practice, 154 

string edit distances are often paired with string alignment algorithms or additional standardisations, 155 

particularly when the strings being compared are of different lengths: Figure 1; see Kershenbaum et 156 

al. (2012) and Garland et al. (2012) for additional information on metric calculation. Importantly, the 157 

Levenshtein distance forms the basis of the Needleman-Wunsch string alignment (Likic 2008; 158 

Needleman & Wunsch 1970) that is used extensively in bioinformatics research to compare sections 159 

of DNA. In our implementation of the LD algorithm, we assign an equal cost (of 1) to any correction 160 

operation (addition, deletion, substitution), no cost (0) for a matching element, and no cost for 161 

differences in sequence lengths after optimal alignment. 162 

Although other binary metrics exist apart from LD, they are in general unsuitable for the task at hand. 163 

For example, the Hamming distance requires sequences of the same length, and the most frequent k 164 

characters simply provides a count of the most common symbol/element. These therefore provide less 165 

information than the Levenshtein distance metric. 166 

 167 

Unary metrics 168 

Transition table (TT) 169 

Acoustic sequences have often been modelled as a Markov chain (Berwick et al. 2011; Briefer et al. 170 

2010; Briefer et al. 2010), in which the probability of a particular element occurring depends only on 171 

the preceding element (or sometimes, more than one preceding element). These conditional 172 

probabilities of each element, given the preceding element(s), can be expressed as a transition matrix 173 

T, in which the element Ti,j represents the probability of the element j occurring after the element i. 174 
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For a sequence consisting of C distinct element types, a C x C transition matrix can be estimated from 175 

empirical data. When comparing two sequences A and B, the similarity between the transition 176 

matrices TA and TB is an indication of the similarity between the sequences (Jin & Kozhevnikov 177 

2011). To calculate a difference metric DTT = f(TA,TB), we can express each matrix as a C
2
 178 

dimensional feature vector V, where the elements of the vector are equal to the elements of the 179 

transition matrix T, i.e., 𝑉 = 𝑇(∙). We then calculate the Euclidean distance between the two vectors 180 

derived from sequences A and B: 181 

𝐷𝑇𝑇(𝐴, 𝐵) = √∑(𝑉𝐴 − 𝑉𝐵)2 

However, such a metric would not be expected to produce a meaningful measure for sequences 182 

composed of non-overlapping element types (e.g. ABCABC, and DEFDEF). Therefore we sort 183 

vectors VA and VB in order of transition probability before comparison. This allows a comparison of 184 

transition probability distributions, independent of element type. 185 

 186 

N-gram distribution (NG) 187 

Researchers have previously proposed that an important property of animal sequences is the nature of 188 

repeating units within the sequence (Cane 1959; Kershenbaum et al. 2014; Pruscha & Maurus 1979). 189 

A sequence of length L consists of L-n+1 sub-sequences of length n. Thus, the five-element sequence 190 

ABBAC consists of 5-2+1=4 two-element sub-sequences: AB, BB, BA, and AC. For a sequence 191 

consisting of C distinct element types, there are a total of C
n
 distinct n-element possible sub-192 

sequences. The vector of sub-sequence frequencies, P(iC
n
) can be considered a feature vector, and 193 

the distance between two strings calculated in a similar way to that shown above: 194 

𝐷𝑁𝐺(𝐴, 𝐵) = √∑(𝑃𝐴 − 𝑃𝐵)2 
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In the following analyses, we chose the n-gram distribution for n = 3, as this provides a good balance 195 

between coverage and diversity. For a comparison of different length n-grams in analysing birdsong, 196 

see Jin & Kozhevnikov (2011). 197 

 198 

Shannon entropy (SE) 199 

Information theory approaches to analysing animal vocal communication have become popular in 200 

recent years. One metric that is simple to understand and easy to apply is the Shannon entropy 201 

(Shannon et al. 1949), and this has been used in a number of studies to measure the complexity of 202 

animal vocal sequences (Da Silva, Piqueira & Vielliard 2000; Doyle et al. 2008; McCowan, Hanser & 203 

Doyle 1999; McCowan, Hanser & Doyle 1999; Suzuki, Buck & Tyack 2006). Shannon entropy 204 

measures the unpredictability of a sequence, or the lack of uniformity of a sequence, so that a 205 

completely predictable sequence (e.g., consisting of the same element repeated over and over) would 206 

have an entropy of zero, whereas a completely unpredictable (random) sequence would have an 207 

entropy of one. The equation for Shannon entropy H is as follows: 208 

𝐻 = − ∑ 𝑃𝑖 log𝐶 𝑃𝑖

𝑖∈1…𝐶

 

where Pi is the probability of element i, drawn from a set of the C elements occurring in the union of 209 

all sequences. 210 

Our SE metric compares two sequences by taking the ratio of the Shannon entropies of the sequences 211 

A and B: 212 

𝐷𝑆𝐸(𝐴, 𝐵) = 𝐻𝐴 𝐻𝐵⁄  where 𝐻𝐴 < 𝐻𝐵 

Although SE is calculated as a single comparison between single measurements on two sequences (in 213 

contrast to the TT and NG metrics described above, both of which result in multiple measurements on 214 

a single sequence), SE should still be considered a unary metric, because it does not directly measure 215 

the distance between two sequences, but rather the difference in a derived metric from each. 216 
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 217 

Entropy rate (ER) 218 

Entropy rate has been shown to be a useful metric for measuring vocal sequence complexity 219 

(Kershenbaum 2013). Entropy rate is derived from the transition table of a sequence, and can be 220 

thought of as a measure of transition table diversity, i.e., the extent to which different transitions 221 

between notes are of uniform or non-uniform probability. Given a transition table Ti,j as described 222 

above, entropy rate ER is defined as: 223 

𝐸𝑅 = − ∑ 𝜋𝑖

𝑖∈1…𝐶

∑ 𝑇𝑖,𝑗 log 𝑇𝑖,𝑗

𝑗∈1…𝐶

 

where i is the stationary probability of element i, i.e., the overall probability of i occurring in the 224 

sequence; see Kershenbaum (2013) for additional information on metric calculation. As with Shannon 225 

entropy, we define a metric DER for the difference between sequences A and B: 226 

𝐷𝐸𝑅(𝐴, 𝐵) = 𝐸𝑅𝐴 𝐸𝑅𝐵⁄  where 𝐸𝑅𝐴 < 𝐸𝑅𝐵 

 227 

Repeat distribution (RD) 228 

The repeat number distribution was used in a recent study to compare the similarity between natural 229 

and synthetic songs of Bengalese finches, Lonchura striata var. domestica (Jin & Kozhevnikov 230 

2011). It is an aggregate measure, calculated on a corpus of sequences. For each set of sequences a 231 

histogram is generated showing the probabilities Pn that any element occurred in isolation (n = 1), was 232 

repeated twice (n = 2), three times (n = 3), and so on. As with the n-gram distribution, we define a 233 

metric that measures the difference between two such histograms, generated from sequences A and B, 234 

where PA and PB are the feature vectors of sequences A and B, comprising the repeat distributions for 235 

all the elements: 236 

𝐷𝑅𝐷(𝐴, 𝐵) = √∑(𝑃𝐴 − 𝑃𝐵)2 
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 237 

Mutual information (MI) 238 

Mutual information is an information theory measure that can be applied easily to quantify the 239 

similarity of two sequences. MI combines both measures of the inherent complexity in a sequence 240 

(via Shannon entropy), and the joint entropy of the sequences, which measures the probability that a 241 

particular pair of elements will occur at the same point in two sequences; see Kershenbaum et al. 242 

(2012) for additional information on metric calculation. MI is defined as follows: 243 

𝑀𝐼 = 𝐻(𝐴) + 𝐻(𝐵) − ∑ ∑ 𝑝𝑖,𝑗 log 𝑝𝑖,𝑗

𝑗
𝑖

 

where H(A) is the Shannon entropy of sequence A, H(B) is the Shannon entropy of sequence B, and 244 

pi,j is the probability that elements i and j occur at the same point in sequences A and B. As with 245 

Shannon entropy, we define a metric DMI for the difference between sequences A and B: 246 

𝐷𝑀𝐼 = 𝑀𝐼𝐴 𝑀𝐼𝐵⁄  where 𝑀𝐼𝐴 < 𝑀𝐼𝐵 

 247 

Lempel-Ziv (LZ) 248 

The Lempel-Ziv complexity (Lempel & Ziv 1976) is an important algorithm used for data 249 

compression, as it is a measure of the number of distinct patterns in a sequence. As a metric of 250 

sequence complexity and an approximation to Kolmogorov complexity (Evans & Barnett 2002), it is 251 

potentially a useful indicator of the diversity of an animal vocal sequence. Although it has not been 252 

widely used in animal studies, Suzuki, Buck & Tyack (2006) suggested the use of the LZ metric for 253 

the analysis of humpback whale song, and Kershenbaum (2013) showed that the LZ metric 254 

outperformed Shannon entropy (SE) in quantifying realistic length acoustic sequences. LZ complexity 255 

was calculated using the Applied Nonlinear Time Series Analysis library for Matlab (Small 2005). 256 

𝐿𝑍 =
𝑐 log 𝐿

𝐿 log 𝐾
 



 

13 

 

where c is the number of distinct substrings in a sequence of length L, and K is the maximum number 257 

of possible distinct substrings. 258 

Sequences for analysis 259 

Artificial sequences 260 

In the first test, we evaluated the utility of each of the similarity metrics by their ability to identify 261 

correctly the stochastic process model from which artificial sequences were generated. We generated 262 

artificial sequences using three different stochastic processes, often used to model animal vocal 263 

sequences (Kershenbaum et al. 2014) : the zero-order Markov process (ZOMP), the first-order 264 

Markov process (FOMP), and the semi-Markov renewal process (RP). The ZOMP is an independent 265 

stochastic process, in which the probability of any particular element occurring at a particular point in 266 

a sequence is determined solely by the prior probability of that element. In the FOMP, element 267 

probabilities are determined by a transition table, where the probability of a particular element 268 

depends on the immediately preceding element. The RP has been shown to be a more realistic model 269 

of animal vocal sequence production (Kershenbaum et al. 2014) in which the number of repeated 270 

elements is drawn from a Poisson distribution, rather than being determined by the diagonal of a 271 

transition table. In each case, we examined 10 sequences of 10 elements each, drawn from five 272 

possible elements (A-E). We generated 30 sequences, 10 from each of the stochastic processes, 273 

ZOMP, FOMP, and RP. The ZOMP was modelled by selecting five random prior probabilities, one 274 

for each element type, and renormalising to sum to unity. We then generated the sequences by 275 

selecting elements according to these prior probabilities. The FOMP was modelled by generating a 276 

random 5 x 5 transition table in a similar way to the ZOMP prior probabilities, so that the rows of the 277 

transition matrix summed to unity. A random initial element was chosen for each 10-element 278 

sequence, and the remaining nine elements in each sequence were chosen randomly according to the 279 

probabilities in the transition table. The RP was modelled in a similar way to the FOMP, except that 280 

for each element generated, a random number of repeats were drawn from a Poisson distribution with 281 

mean five (to give 95% confidence of ≤ 9 repeats). Having generated 30 sequences of 10 elements, we 282 



 

14 

 

then calculated a 30 x 30 distance matrix for each of the similarity metrics. We then used an Adaptive 283 

Resonance Theory (ART) artificial neural network to cluster these 30 points into natural groupings, 284 

setting a maximum of 100 possible clusters. ART networks have been used in a number of previous 285 

studies to cluster data derived from animal vocalisations (Deecke & Janik 2006; Janik 1999; Quick & 286 

Janik 2012). We then calculated the normalised mutual information (NMI) as a metric of goodness of 287 

clustering (Zhong & Ghosh 2005), by comparing the composition of the generated clusters H(Y) with 288 

the true generation process of each H(Ŷ). Thus, NMI indicates the proportion of uncertainty predicted 289 

by the metric. We then repeated this process 100 times using new random transition matrices, 290 

generating 3000 sequences in total. 291 

In the second test using artificial sequences, we simulated “individuals” by generating 100 random RP 292 

transition matrices, and from each of them producing a set of 10 sequences of 10 elements each. We 293 

used the RP generation process, rather than a Markovian ZOMP or FOMP, as the RP more reliably 294 

describes many types of animal vocal sequences (Kershenbaum et al. 2014). Each sequence generated 295 

from a single transition matrix would be expected to be more similar to other sequences from the 296 

same transition matrix, than sequences generated by a different random transition matrix, therefore we 297 

used a similar clustering approach as in the stochastic process analysis above. We calculated the 100 x 298 

100 distance matrix for each similarity metric, obtained by comparing the sequences from each of the 299 

100 transition matrices, and clustered the results as before, measuring the NMI as an indication of 300 

clustering success. 301 

For a final test using artificial sequences, we examined the effect of typical sample sizes (number of 302 

sequences) on each of the similarity metrics. Using the sequences generated in the individual 303 

simulation above, we varied the number of sequences analysed from one to ten, recalculated the 304 

distance matrices and clustering, and measured the NMI. 305 

 306 

Animal sequences 307 
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We tested the performance of the above metrics using empirical sequences of animal vocalisations, 308 

where those sequences are thought to contain information that is known a priori. Very few examples 309 

exist where contextual information is objectively known to exist in animal vocal sequences. However, 310 

the signature whistles of bottlenose dolphins have been shown to encode individual identity in the 311 

sequence of up-down frequency shifts, known as a Parsons code (Kershenbaum, Sayigh & Janik 312 

2013). We used a data set consisting of 400 signature whistles, 20 from each of 20 individual 313 

dolphins, recorded during capture-release events; see Sayigh et al. (2007) and Kershenbaum, Sayigh 314 

& Janik (2013) for additional details. We converted each whistle into a 9-element Parsons code, with 315 

seven possible element values (‘‘large drop’’, ‘‘medium drop’’, ‘‘small drop’’, ‘‘no change’’, ‘‘small 316 

rise’’, ‘‘medium rise’’, and ‘‘large rise’’). We then calculated distance matrices using each of the 317 

similarity metrics described above, and clustered using an ART network. For the calculation of NMI, 318 

we compared the generated clusters to the known clusters of individual identity. As empirical data do 319 

not allow the generation of unlimited data sets as with artificial sequences, we estimated confidence 320 

intervals for each of the empirical data sets by randomly selecting 80% of the calls for clustering and 321 

calculation of NMI, and repeated this process 100 times.  322 

We analysed three further empirical data sets for which contextual information in vocal sequences has 323 

been proposed. The first data set used recordings of humpback whales (for details see Garland et al. 324 

2012), the second data set used recordings of rock hyraxes (see Kershenbaum et al. 2012), and the 325 

third set Carolina chickadees (see Freeberg 2012). Previous studies have shown that in the humpback 326 

whale, rock hyrax, and Carolina chickadee, song syntax varies according to the geographical origin of 327 

the population. For example, not only does chickadee song syntax vary between locations, but there 328 

appear to be different functional use of certain sequences in the different populations (Freeberg 2012). 329 

The humpback whale data set consisted of 202 songs composed of 20 different element types 330 

(themes), recorded from 42 individuals. Humpback whale song is a complex, stereotyped, repetitive, 331 

long, male display that has multiple levels of hierarchy in its organisation (Herman & Tavolga 1980; 332 

Payne & Payne 1985; Payne & McVay 1971). A few sounds (units) are arranged in a stereotyped 333 

phrase which is repeated multiple times to make a theme (Payne & McVay 1971). A number of 334 
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themes, sung in a particular order, are combined to form a song. The order and content of the themes 335 

are highly stereotyped, and all males within a population adhere to the same arrangement and content 336 

of the song at any given time as the display is constantly changing (Frumhoff 1983; Payne, Tyack & 337 

Payne 1983; Payne & Payne 1985). This analysis focused on the theme level in the hierarchical 338 

arrangement of humpback whale song. Each string therefore represented the sequence of themes 339 

(elements) that comprised a song; e.g., theme 1, theme 2, theme 3, theme 4, theme 5; see Garland et 340 

al. (2012) for further information and example sequences. This level within the hierarchy takes into 341 

account information on the sequence of units and the repetition of phrases at a higher level, but does 342 

not examine these lower levels explicitly. Strings were classified according to their geographical 343 

location: New Caledonia, Vanuatu, or eastern Australia, and this geographical origin was compared to 344 

the clusters generated by the ART network. Humpback whale song is constantly changing, and has 345 

been shown to undergo complete song revolutions in this region (Garland et al. 2011; Garland et al. 346 

2011; Noad et al. 2000). The current analysis incorporates two different song types (lineages) that 347 

contain different themes (vocabulary), and are present in these populations at various points over the 348 

four years of recording. Therefore, each metric must be robust to the underlying transmission 349 

dynamics of this display.  350 

The hyrax data consisted of 1130 song sequences composed of five different element types, recorded 351 

from a single individual at each of 18 different locations in Israel. The Carolina chickadee data 352 

consisted of 1184 sequences of calls, recorded from 60 sites in the states of Tennessee and Indiana, 353 

USA. Links to these data sets are available in the supplemental information. 354 

 355 

RESULTS 356 

Artificial sequences 357 

For sequences generated by different stochastic processes, the entropy rate (ER) metric provided the 358 

best clustering, with a NMI value of 0.518 ± 0.005 (standard error) (Figure 2a), while the binary 359 

Levenshtein distance (LD) metric gave a NMI of 0.476 ± 0.006. A post-hoc Tukey test following 360 
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ANOVA showed significant differences between the NMI scores of these two metrics. All other 361 

metrics produced significantly lower NMI values. 362 

Results from clustering sequences of simulated "individuals" (sequences generated by stochastic 363 

processes with similar parameters), indicated that NG produced the highest NMI score 0.751 ± 0.001, 364 

while the LD, RD, and TT metrics all produced high but slightly lower NMI scores (greater than 0.7; 365 

Figure 2b), with no significant differences among the NMI values of these three metrics. 366 

Both the LD and NG metrics that performed well on the above clustering tasks were also robust to 367 

sample size (Figure 3). Most other metrics were also relatively unaffected by sample size. However, 368 

the RD performed poorly at smaller sample sizes (≤ 4), and the MI declined with increasing corpus 369 

size (> 2). 370 

 371 

Animal sequences  372 

When clustering to reconstruct the individual identity from bottlenose dolphin signature whistles, the 373 

Levenshtein distance (LD) performed significantly better than all other tested metrics, with an NMI of 374 

0.661 ± 0.001 (Figure 4a). The n-gram distribution (NG) also performed well, with an NMI of 0.63p ± 375 

0.001. Clustering of the humpback whale song data to indicate population (geographic) origin, 376 

showed the LD again performed significantly better than all other tested metrics (NMI of 0.491 ± 377 

0.005; Figure 4b). The NG provided the second best, although significantly poorer, metric (NMI of 378 

0.367 ± 0.005). All metrics performed poorly in clustering the geographical origin of hyrax songs; 379 

however, the LD metric was again significantly better than all others tested (NMI 0.1684 ± 0.001, 380 

compared to the next best NMI of 0.130 ± 0.001 for TT; Figure 4c). Clustering of the chickadee data 381 

to distinguish between birds recorded in Tennessee and those recorded in Indiana, showed the LD 382 

performed significantly better than all other metrics (NMI of 0.450 ± 0.001; Figure 4d), followed by 383 

NG (NMI 0.369 ± 0.001). 384 

 385 
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DISCUSSION 386 

We analysed the performance of eight different techniques from two broad approaches, to investigate 387 

the utility of each approach in the comparison of animal sequences. The unary and binary metrics 388 

performed similarly well in the artificial sequence tests, with the entropy rate (ER) metric slightly 389 

better than the Levenshtein distance binary metric (LD), in distinguishing between data generated by 390 

different stochastic processes, and n-gram (NG) slightly better in distinguishing simulated individuals. 391 

However, the LD metric performed significantly better than all other tested metrics when presented 392 

with empirical animal sequences. This result emphasises that caution should be used when using 393 

artificially generated sequences based on simple stochastic models to simulate animal vocal 394 

sequences. Recent work has shown that assumptions of simple models for animal vocal production are 395 

likely to be inaccurate (Kershenbaum et al. 2014), and similar conclusions have been indicated for 396 

cetacean song (Miksis-Olds et al. 2008). The difference between metric performance on artificial and 397 

on empirical data is striking. Little is known of the cognitive mechanisms by which animals encode 398 

and decode information in vocalisations (Thornton, Clayton & Grodzinski 2012); researchers must 399 

rely on isolated examples where information content is known a priori to draw conclusions about 400 

which analytical techniques are best suited for vocal sequence data. Our results clearly show that the 401 

LD metric outperforms other metrics on empirical data, despite performing less effectively on 402 

simulated data. This indicates that the sequential order of the sequences varied across 403 

location/individual while the level of complexity is similar. The Levenshtein distance was the metric 404 

of choice for clustering dolphin signature whistles into individuals, humpback whale song into 405 

populations, hyrax songs into geographical region, and chickadee calls into state of origin. Analysis of 406 

the sensitivity of the different metrics to sample size showed that most of the metrics that performed 407 

well across the data sets (LD, NG, LZ), were also robust to sample size.  408 

Results from the current paper in combination with previous work (Eriksen et al. 2005; Garland et al. 409 

2012; Garland et al. 2013; Helweg et al. 1998; Tougaard & Eriksen 2006), highlight the success of 410 

the Levenshtein distance (LD) metric in the analysis of sequence content and comparison of 411 

humpback whale song. A large body of work has previously shown that song differences among 412 
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humpback whale populations can indicate geographic origin of a singer (e.g., Garland et al. 2015; 413 

Helweg et al. 1998; Payne & Guinee 1983). Despite dynamic song transmission in the South Pacific 414 

region, fine-scale song differences allow the identification of population origin (Garland et al. 2011; 415 

Garland et al. 2012; Garland et al. 2013; Garland et al. 2015). The current paper examined the theme 416 

sequences (i.e., a set of phrases under a single label) as part of the largest analysis to date of sequence 417 

comparison algorithms for humpback whale song (Garland et al. 2013), which indicated the LD out 418 

performed all other tested metrics. We suggest when comparing song sequences, the LD metric 419 

should be employed preferentially, while if the complexity or information content of each song is the 420 

focus of study, the researcher should employ other techniques such as entropy.  421 

Previous studies of sequence comparison in hyrax song (Kershenbaum et al. 2012) have shown 422 

geographical variation in sequence structure using the LD metric, as these findings were supported by 423 

application of an unrelated (unary) metric, mutual information (MI). In the current study, MI 424 

performed very poorly on both simulated and empirical data, although MI performance was somewhat 425 

better on the hyrax data than on the other data sets. This implies that the aspect of the sequences that 426 

is measured by MI does not vary in correlation with geographic location or individual. While not all 427 

studies can compare large numbers of analytical algorithms, this emphasises the utility of comparing 428 

at least two different techniques when assessing novel algorithms, to ensure that results are robust 429 

under a range of analytical approaches. 430 

Despite all tested metrics performing poorly in the assessment of geographic origin in hyrax song, the 431 

LD metric was significantly better than all others. In previous work, (Kershenbaum et al. 2012) 432 

measured the correlation between sequence similarity and the distance between populations, rather 433 

than classification success, and the latter suggests that distinct dialects are not present in the hyrax. 434 

Rather, small but significant differences are present between all pairs of populations, depending on 435 

geographic isolation. In contrast, humpback whales, chickadees, and bottlenose dolphins show strong 436 

discrimination between in-group and out-group sequences, indicating that the differences between the 437 

vocal sequences of different individuals or populations are much more marked. This may indicate an 438 

adaptive role to distinctive vocalisations in dolphins and whales, such as individual identification 439 
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(Janik & Slater 1998; Janik, Sayigh & Wells 2006; Quick & Janik 2012), while in chickadees 440 

adaptive, developmental, and phylogenetic explanations for regional dialects have been suggested 441 

(Freeberg 2012). Humpback whale song is hypothesised to contain information about the reproductive 442 

fitness and population origin of the signaller (Helweg et al. 1992; Helweg et al. 1992; Payne & 443 

Guinee 1983). Hyrax song complexity is not thought to contain contextual information beyond male 444 

fitness (Demartsev et al. 2014; Koren & Geffen 2009), although this assumption is currently untested. 445 

In contrast, dolphin signature whistles are known to be individually distinctive whistles that can be 446 

identified by the unique pattern of frequency modulations (Janik, Sayigh & Wells 2006). The 447 

characterisation of signature whistles based on a 7-element Parsons code in a previous study 448 

(Kershenbaum, Sayigh & Janik 2013) allows individual identification of the whistler. The LD 449 

significantly outperformed all other models in clustering to reconstruct not only the individual identity 450 

from signature whistles, but the geographic origin for humpback whale song, chickadee calls, and 451 

hyrax song, highlighting the importance of evaluating different metrics with a priori information.  452 

One likely explanation for the higher performance of the LD metric is that it alone among the metrics 453 

analysed uses a direct comparison of the vocal sequences between samples, thereby using more 454 

information about the sequences than the other metrics. The LD metric by design can solely be 455 

employed to compare two strings and it excels at this task; it does not provide an understanding of the 456 

information content within each string, or the sequence structure. By necessity this means that LD 457 

also compares the vocabularies of a pair of sequences, and therefore two sequences that are based on 458 

the same set of sequence elements are likely to have a lower LD value than two sequences that are 459 

composed of different elements, but have similar sequence structure. Regional differences in the 460 

vocabulary (e.g., humpback song themes) provide important information on the connectivity of 461 

populations at a broad-scale despite an overall similarity in song structure (hierarchical arrangement). 462 

To establish the influence of overlapping vocabulary is beyond the scope of this paper (although two 463 

of the three humpback populations switched between two vocabularies – song types – over the course 464 

of this study), but we present as supplemental information (Figure S1) the element distributions of the 465 

different data sets, which in most cases were quite consistent.  466 
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Sample sizes can be constrained in the study of wild animals and particularly in marine mammal 467 

studies. Samples may be collected infrequently and with a patchy distribution due to the challenging 468 

conditions presented in collecting such data. Understanding how a metric reacts to a small sample size 469 

is invaluable in metric choice. The robust nature of the LD and NG to smaller sample sizes and their 470 

high performance in the comparison task makes them appealing for analysis. The data presented here 471 

indicated that LD and NG performed well with a sample size of three or less, while TT and RD should 472 

not be considered as a metric for analysis until a sample size of four or more is available.  473 

Here, we have presented a robust understanding of which metric should be preferentially employed in 474 

studies involving the comparison of individual- or group-specific vocalisations, such as signature 475 

whistles. The success in identifying individual/geographic variations in vocal sequences has 476 

implications for assessing population structure, song transmission, and dialect similarity, particularly 477 

for populations where rapid song changes occur. For example, the analysis of humpback whale song 478 

presented here was able to identify population origin despite rapid song dynamics (Garland et al. 479 

2011; Garland et al. 2012; Garland et al. 2013). We suggest that the LD can be applied to any level 480 

within a complex display, but suggest future studies strive for the lowest level sequence within the 481 

hierarchy (i.e., sequence of units or phrases), to increase the amount of information directly compared 482 

and thus encapsulated by the sequence. 483 

The LD method provides a metric to compare sequence content and organisation (and thus songs) 484 

within and among multiple individuals, populations, years, and locations. In particular, transmission 485 

of humpback whale song is largely cultural, and the level and rate of change remains unparalleled in 486 

any other non-human animal as complete population-wide changes are replicated in multiple 487 

populations at a vast geographic scale (Garland et al. 2011). Thus, fundamental questions in animal 488 

culture, vocal learning, and cultural evolution can be explored using humpback whale song as a 489 

model, and with the help of the LD metric. Further, the evolution of complex vocal labels (i.e., 490 

signature whistles) and the underlying cognitive abilities required for such evolution, are extremely 491 

important in understanding the evolution of vocal complexity (Janik 2014). Robust metrics that 492 

capture the information encoded in the sequences with the highest fidelity are thus required to address 493 
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these far-reaching evolutionary questions. We suggest the LD should be utilised in such comparison 494 

studies in preference to Markov and information theory based models.  495 

 496 

Conclusions 497 

The Levenshtein distance (LD; binary metric) significantly outperformed all other tested metrics in 498 

our comparative analysis of animal acoustic sequences. It provides a direct measure of pairwise 499 

differences among sequences, instead of a comparison of aggregate similarity. N-grams (Markov 500 

chains) were the second most successful metric; the underlying issue that the tested species’ 501 

vocalisations may be governed by non-Markovian dynamics and the consistent success of the LD 502 

metric, suggests n-grams should always be a second choice. Given the inherent interest in the origins 503 

of human language and the evolution of signalling complexity, robust and reliable metrics that can 504 

capture the content and arrangement of the signal are essential to address these fundamental questions 505 

in animal communication and cultural evolution.  506 
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FIGURES 698 

 699 

 700 

Figure 1. Examples of string alignment and edit distance. (a) Two unaligned strings with a LD of 7. 701 

(b) After aligning the strings to minimise the difference, LD = 1. (c) Two hyrax bouts which are 702 

highly different, LD = 11. (d) Two bouts which are very similar, LD = 1. Reproduced from 703 

(Kershenbaum et al. 2012). 704 
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 706 

 707 

Figure 2. Results of the normalised mutual information (NMI) scores for each metric using a) 708 

synthetic processes, and b) synthetic individuals. Metric labels: Levenshtein distance (LD), Repeat 709 

distribution (RD), Transition table (TT), Shannon entropy (SE), Lempel-Ziv (LZ), N-gram (NG), 710 

Mutual information (MI), and entropy rate (ER). A-F indicate post-hoc Tukey groupings. 711 

  712 



 

34 

 

 713 

 714 

Figure 3. Results of the effect of sample (corpus) size on the NMI scores (± standard error) for each 715 

similarity metric. Metric labels are the same as Figure 2. 716 
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 718 

 719 

Figure 4. Results of the NMI (normalised mutual information) scores for each metric using a) 720 

bottlenose dolphin signature whistles, b) humpback whale songs, c) rock hyrax songs, and d) Carolina 721 

chickadee calls. Metric labels are the same as Figure 2. A-F indicate post-hoc Tukey groupings. 722 
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