13 research outputs found

    Spatiotemporal use predicts social partitioning of bottlenose dolphins with strong home range overlap

    Get PDF
    © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Ranging behaviour and temporal patterns of individuals are known to be fundamental sources of variation in social networks. Spatiotemporal dynamics can both provide and inhibit opportunities for individuals to associate, and should therefore be considered in social analysis. This study investigated the social structure of a Lahille's bottlenose dolphin (Tursiops truncatus gephyreus) population, which shows different spatiotemporal patterns of use and gregariousness between individuals. For this, we constructed an initial social network using association indices corrected for gregariousness and then uncovered affiliations from this social network using generalized affiliation indices. The association‐based social network strongly supported that this dolphin population consists of four social units highly correlated to spatiotemporal use patterns. Excluding the effects of gregariousness and spatiotemporal patterns, the affiliation‐based social network suggested an additional two social units. Although the affiliation‐based social units shared a large part of their core areas, space and/or time use by individuals of the different units were generally distinct. Four of the units were strongly associated with both estuarine and shallow coastal areas, while the other two units were restricted to shallow coastal waters to the south (SC) and north of the estuary (NC), respectively. Interactions between individuals of different social units also occurred, but dolphins from the NC were relatively more isolated and mainly connected to SC dolphins. From a conservation management perspective, it is recommended that information about the dolphin social units should be incorporated in modeling intrapopulation dynamics and viability, as well as for investigating patterns of gene flow among them

    Genetic divergence between two phenotypically distinct bottlenose dolphin ecotypes suggests separate evolutionary trajectories

    Get PDF
    Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST = 0.183, p < .001; ΩST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed

    Abundance of bottlenose dolphins, Tursiops truncatus (Cetacea: Delphinidae), inhabiting the Patos Lagoon estuary, southern Brazil: implications for conservation

    No full text
    A new mark-recapture abundance estimate and a photographic census were carried out to investigate the possible decline in the abundance of the bottlenose dolphins, Tursiops truncatus (Montagu, 1821), in the Patos Lagoon estuary due to the high levels of bycatch mortality which occurred between 2002 and 2006 in oceanic coastal areas close to the estuary. Fourteen systematic boat surveys were conducted between August and early December 2005 to photo-identify the bottlenose dolphins. The estimated number of animals, with long-lasting marks, in the population obtained from Chapman's and Mth models were 51 (95% CI = 49-53) and 52 (95% CI = 51-60), respectively. Taking into account the proportion of dolphins with long-lasting marks in the population, the total estimated population size ranged between 84 (95% CI = 76-93) and 86 (95% CI = 78-95) individuals, respectively, which was very similar to the 84 individuals revealed by the population census. Our results did not differ from the abundance estimate carried out in 1998, prior to the high fishing-related mortality event, suggesting that the population is stable. Plausible argument to explain the stability of the population is that some carcasses found on the oceanic coastal beaches near Patos Lagoon estuary come from animals that do not belong to the estuary community. Future studies should investigate fine-scale habitat partition between estuarine and adjacent coastal dolphins. If the existence of different communities living in close proximity (estuarine and coastal areas near to the estuary) is confirmed, a new abundance estimate is needed to access the conservation status of bottlenose dolphins in this region

    Individual sightings and parameters of Lahille’s bottlenose dolphins

    No full text
    Data organized to entry in the SocProg program and formulation of maps using Arcmap and estimates of home range in the Software R. CMD in the supplemental plan refers to Community Division by Modularity

    Data from: Spatiotemporal use predicts social partitioning of bottlenose dolphins with strong home range overlap

    No full text
    Ranging behaviour and temporal patterns of individuals are known to be fundamental sources of variation in social networks. Spatiotemporal dynamics can both provide and inhibit opportunities for individuals to associate, and should therefore be considered in social analysis. This study investigated the social structure of a Lahille’s bottlenose dolphin (Tursiops truncatus gephyreus) population, which shows different spatiotemporal patterns of use and gregariousness between individuals. For this we constructed an initial social network using association indices corrected for gregariousness and then uncovered affiliations from this social network using generalized affiliation indices. The association-based social network strongly supported that this dolphin population consists of four social units highly correlated to spatiotemporal use patterns. Excluding the effects of gregariousness and spatiotemporal patterns, the affiliation-based social network suggested an additional two social units. Although the affiliation-based social units shared a large part of their core areas, space and/or time use by individuals of the different units were generally distinct. Four of the units were strongly associated with both estuarine and shallow coastal areas, while the other two units were restricted to shallow coastal waters to the south (SC) and north of the estuary (NC), respectively. Interactions between individuals of different social units also occurred, but dolphins from the NC were relatively more isolated and mainly connected to SC dolphins. From a conservation management perspective, it is recommended that information about the dolphin social units should be incorporated in modelling intra-population dynamics and viability, as well as for investigating patterns of gene flow among them

    Report of the Working Group on the Behavioral Ecology of bottlenose dolphins in the Southwest Atlantic Ocean

    No full text
    In this report, we present a compilation of the behavioral patterns of bottlenose dolphins and social structure throughout the Southwest Atlantic Ocean. We have compiled and summarized available data concerning: (i) behavioral activities (states and events), (ii) social structures (group size and composition), (iii) acoustic behavior and (iv) intra and interspecific interactions of bottlenose dolphin populations throughout the SWAO, from northern Brazil to southern Argentina. Lack of systematic and standardized methodologies for data collection precludes robust data analyses in respect of bottlenose dolphin behavior. Available information suggests that the studied populations presented weak intra-population associations and that coastal individuals tend to form smaller groups than their oceanic counterparts. Bottlenose dolphins from SWAO produce stylized whistles in which the acoustic parameters are similar to published ranges around the world and some results indicate significant local inter-population variation in the acoustic parameters of the whistles. Data of intra and interspecific interactions of bottlenose dolphins in the SWAO are scarce and therefore do not fully allow a comprehensive analysis of the situational contexts

    Introduction to the Special Volume on Tursiops in the Southwest Atlantic Ocean

    No full text
    LAJAM Special Volume on Tursiops in the Southwest Atlantic Ocean is introduced

    Ecological divergence and speciation in common bottlenose dolphins in the Western South Atlantic

    No full text
    Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat

    Data from: Genetic divergence between two phenotypically distinct bottlenose dolphin ecotypes suggests separate evolutionary trajectories

    No full text
    Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal-offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST = 0.183, p < .001; ΩST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed

    Genetic divergence between two phenotypically distinct bottlenose dolphin ecotypes suggests separate evolutionary trajectories

    No full text
    Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal-offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST = 0.183, p < .001; ΩST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.Organization for the Conservation of South American Aquatic Mammals-YAQU PACHA e.V., the Brazilian Long Term Ecological Program (PELD-National Council for Research and Technological Development/CNPq), Chevron Brasil Upstream Frade Ltda, BG Group, Brasil, Instituto Aqualie.http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7758am2018Mammal Research Institut
    corecore