8 research outputs found
mir-181A/B-1 controls thymic selection of treg cells and tunes their suppressive capacity
The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1–deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte–associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function
Tracking of Adipose-Derived Mesenchymal Stromal/Stem Cells in a Model of Cisplatin-Induced Acute Kidney Injury: Comparison of Bioluminescence Imaging versus qRT-PCR
Determining the cell fate and the distribution of mesenchymal stromal/stem cells (MSCs) after transplantation are essential parts of characterizing the mechanisms of action and biosafety profile of stem cell therapy. Many recent studies have shown that MSCs migrate into injured tissues, but are only detectable at extremely low frequencies. We investigated the cell fate of MSCs after transplantation in an acute kidney injury (AKI) mouse model using in vivo bioluminescence imaging (BLI) and subsequent verification of cell migration using quantitative real-time polymerase chain reaction (qRT-PCR). The AKI was induced by a single injection of cisplatin (8 or 12 mg/kg). One day later, adipose-derived mesenchymal stromal/stem cells isolated from luciferase transgenic mice (Luc+-mASCs, 5 × 105) were intravenously transplanted. Migration kinetics of the cells was monitored using BLI on day 1, 3, and 6, and finally via quantitative real-time PCR at the endpoint on day 6. Using BLI, infused Luc+-mASCs could only be detected in the lungs, but not in the kidneys. In contrast, PCR endpoint analysis revealed that Luc-specific mRNA could be detected in injured renal tissue; compared to the control group, the induction was 2.2-fold higher for the 8 mg/kg cisplatin group (p < 0.05), respectively 6.1-fold for the 12 mg/kg cisplatin group (p < 0.001). In conclusion, our study demonstrated that Luc-based real-time PCR rather than BLI is likely to be a better tool for cell tracking after transplantation in models such as cisplatin-induced AKI
Tracking of Adipose-Derived Mesenchymal Stromal/Stem Cells in a Model of Cisplatin-Induced Acute Kidney Injury: Comparison of Bioluminescence Imaging versus qRT-PCR
Determining the cell fate and the distribution of mesenchymal stromal/stem cells (MSCs) after transplantation are essential parts of characterizing the mechanisms of action and biosafety profile of stem cell therapy. Many recent studies have shown that MSCs migrate into injured tissues, but are only detectable at extremely low frequencies. We investigated the cell fate of MSCs after transplantation in an acute kidney injury (AKI) mouse model using in vivo bioluminescence imaging (BLI) and subsequent verification of cell migration using quantitative real-time polymerase chain reaction (qRT-PCR). The AKI was induced by a single injection of cisplatin (8 or 12 mg/kg). One day later, adipose-derived mesenchymal stromal/stem cells isolated from luciferase transgenic mice (Luc+-mASCs, 5 × 105) were intravenously transplanted. Migration kinetics of the cells was monitored using BLI on day 1, 3, and 6, and finally via quantitative real-time PCR at the endpoint on day 6. Using BLI, infused Luc+-mASCs could only be detected in the lungs, but not in the kidneys. In contrast, PCR endpoint analysis revealed that Luc-specific mRNA could be detected in injured renal tissue; compared to the control group, the induction was 2.2-fold higher for the 8 mg/kg cisplatin group (p < 0.05), respectively 6.1-fold for the 12 mg/kg cisplatin group (p < 0.001). In conclusion, our study demonstrated that Luc-based real-time PCR rather than BLI is likely to be a better tool for cell tracking after transplantation in models such as cisplatin-induced AKI
miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity.
The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function
Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis
ABSTRACTInterferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD
Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumabtreated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy