12,029 research outputs found

    Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited

    Get PDF
    The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history. This includes the first observations of the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors can be used in conventional photovoltaic architectures. We review developments in this field, with a particular emphasis on the materials known to display the APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical analysis is complemented with first-principles calculation of the underlying electronic structure. In addition to discussing the implications of a ferroelectric absorber layer, and the solid state theory of polarisation (Berry phase analysis), design principles and opportunities for high-efficiency ferroelectric photovoltaics are presented

    The Existence Of A Zone Of Finite Thickness During Tetracycline Labeling Of Bone

    Get PDF

    The Qualitative Interview in Psychology and the Study of Social Change: Sexual Identity Development, Minority Stress, and Health in the Generations Study.

    Get PDF
    Interviewing is considered a key form of qualitative inquiry in psychology that yields rich data on lived experience and meaning making of life events. Interviews that contain multiple components informed by specific epistemologies have the potential to provide particularly nuanced perspectives on psychological experience. We offer a methodological model for a multi-component interview that draws upon both pragmatic and constructivist epistemologies to examine generational differences in the experience of identity development, stress, and health among contemporary sexual minorities in the United States. Grounded in theories of life course, narrative, and intersectionality, we designed and implemented a multi-component protocol that was administered among a diverse sample of three generations of sexual minority individuals. For each component, we describe the purpose and utility, underlying epistemology, foundational psychological approach, and procedure, and we provide illustrative data from interviewees. We discuss procedures undertaken to ensure methodological integrity in process of data collection, illustrating the implementation of recent guidelines for qualitative inquiry in psychology. We highlight the utility of this qualitative multi-component interview to examine the way in which sexual minorities of distinct generations have made meaning of significant social change over the past half-century

    Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.

    Get PDF
    The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant

    Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide

    Get PDF
    The hybrid halide perovskite CH3NH3PbI3 exhibits a complex structural behaviour, with successive transitions between orthorhombic, tetragonal and cubic polymorphs at ca. 165 K and 327 K. Herein we report first-principles lattice dynamics (phonon spectrum) for each phase of CH3NH3PbI3. The equilibrium structures compare well to solutions of temperature-dependent powder neutron diffraction. By following the normal modes we calculate infrared and Raman intensities of the vibrations, and compare them to the measurement of a single crystal where the Raman laser is controlled to avoid degradation of the sample. Despite a clear separation in energy between low frequency modes associated with the inorganic PbI3 network and high-frequency modes of the organic CH3NH3+ cation, significant coupling between them is found, which emphasises the interplay between molecular orientation and the corner-sharing octahedral networks in the structural transformations. Soft modes are found at the boundary of the Brillouin zone of the cubic phase, consistent with displacive instabilities and anharmonicity involving tilting of the PbI6 octahedra around room temperature.Comment: 9 pages, 4 figure

    The cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K

    Get PDF
    The structure of black formamidinium lead halide, -[HC(NH2)2]PbI3, at 298 K has been refined from high resolution neutron powder diffraction data and found to adopt a cubic perovskite unit cell, a = 6.3620(8) Å. The trigonal planar [HC(NH2)2]+ cations lie in the central mirror plane of the unit cell with the formamidinium cations disordered over 12 possible sites arranged so that the C-H bond is directed into a cube face while the -NH2 groups hydrogen bond (NH
I = 2.75 – 3.00Å) with the iodide atoms of the [PbI3]− framework. High atomic displacement parameters for the formamidinium cation are consistent with rapid molecular rotations at room temperature as evidenced in ab initio molecular dynamic simulations

    Phenomenology of iron-assisted ion beam pattern formation on Si(001)

    Get PDF
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation
    • 

    corecore