468 research outputs found

    The Virtue of Patience when Scheduling Media in Presence of Feedback

    Get PDF
    We consider streaming of pre-encoded and packetized media over best-effort networks in presence of acknowledgment feedback. Given an estimation of future transmission resources and knowing about past transmissions and received acknowledgments, a scheduling algorithm is defined as a mechanism that selects the data to send over the network at any given time, so as to minimize the end-to-end distortion. Our work first reveals the suboptimality of popular greedy schedulers, which might be strongly penalized by anticipated retransmissions. It then proposes an original scheduling algorithm that avoids premature retransmissions, while preserving the simplicity of the greedy paradigm. The proposed patient greedy (PG) scheduler appears to save up to 50% of rate in comparison with the conventional greedy approach

    Packetized Media Streaming with Comprehensive Exploitation of Feedback Information

    Get PDF
    This paper addresses the problem of streaming packetized media over a lossy packet network, with sender-driven (re)transmission using acknowledgement feedback. The different transmission scenarios associated to a group of interdependent media data units are abstracted in terms of a finite alphabet of policies, for each single data unit. A rate-distortion optimized markovian framework is proposed, which supports the use of comprehensive feedback information. Contrarily to previous works in rate-distortion optimized streaming, whose transmission policies definitions do not take into account the feedback expected for other data units, our framework considers all the acknowledgment packets in defining the streaming policy of a single data unit. More specifically, the notion of master and slave data unit is introduced, to define dependent streaming policies between media packets; the policy adopted to transmit a slave data unit becomes dependent on the acknowledgments received about its masters. One of the main contributions of our work is to propose a methodology that limits the space of dependent policies for the RD optimized streaming strategy. A number of rules are formulated to select a set of relevant master/slave relationships, defined as the dependencies that are likely to bring RD performance gain in the streaming system. These rules provide a limited complexity solution to the rate-distortion optimized streaming problem, with comprehensive use of feedback information. Based on extensive simulations, we conclude that (i) the proposed set of relevant dependent policies achieves close to optimal performance, while being computationally tractable, and (ii) the benefit of dependent policies is driven by the relative sizes and importance of interdependent data units. Our simulations demonstrate that dependent streaming policies can perform significantly better than independent streaming strategies, especially for cases where some media data units bring a relatively large gain in distortion, in comparison with other data units they depend on for correct decoding. We observe however that the benefit becomes marginal when the gain in distortion per unit of rate decreases along the media decoding dependency path. Since such a trend characterizes most conventional scalable coders, the implementation of dependent policies can reasonably be ruled out in these specific cases

    Explicit window-based transport control protocols in lossy environments

    Get PDF
    This paper addresses efficient packet loss recovery by retransmission in window-based congestion control protocols. It builds on explicit congestion control mechanisms to decouple the packet loss detection from the congestion feedback signals. Implicit algorithms alternatively infer congestion from losses (which yields to window size reduction), and therefore do not allow to evaluate the performance of window-based transmission algorithms in lossy environments. We first propose a simple modification of TCP that offers the possibility for explicit congestion control. Different retransmission strategies applicable to window-based congestion control protocols are then discussed in the framework of explicit congestion control. We introduce a new early retransmission timer that significantly improves the error resiliency when combined with explicit congestion control. Extensive simulations then compare the error recovery mechanisms generally used in recent TCP implementations, and the new loss monitoring and recovery strategies, combined with explicit congestion control protocols. Performances are analyzed in a simple network topology where a bottleneck link is shared by loss-free, and respectively lossy connections. Retransmissions triggered by the proposed accurate loss monitoring mechanism are shown to end up in a fair share of the bottleneck bandwidth between all connections, even for high loss ratios and bursty loss processes. The link utilization is in the same time close to optimal. Explicit congestion control, combined with efficient error control strategies, can therefore provide a valid solution to reliable and controlled connections over lossy network infrastructures

    Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems

    Get PDF
    Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a conventional (CONMIN) and a bio-organic (BIOORG) cropping system of a long-term field experiment over three vegetation periods (winter wheat-soybean-maize). Microplots planted with wheat received a single application of 15N-labelled slurries (either urine or faeces labelled) or mineral fertiliser. At the end of each vegetation period we tested whether higher microbial activity and larger microbial biomass in BIOORG than CONMIN soils, and lower long-term N input level in BIOORG, affected use efficiency and fate of fertiliser N not taken up by crops. Recovery of 15N in wheat was 37%, 10% and 47% from urine, faeces and mineral fertiliser, respectively, and decreased strongly in the residual years. In total 41%, 15% and 50% of 15N applied as urine, faeces and mineral fertiliser was recovered by the three crops. 15N recovered from originally applied urine, faeces and mineral fertiliser in the topsoil (0-18cm) at the end of the third vegetation period was 19%, 25% and 20%, respectively. Of urine-, faeces- and mineral fertiliser-15N, 40%, 61% and 29%, respectively, was not recovered by the three crops and in topsoil suggesting significant transport of 15N-labelled components to deeper soil layers. CONMIN and BIOORG differed neither in fertiliser N use efficiency by crops nor in 15N recovery in soil indicating insignificant difference in the turnover and utilization of the applied manure nitrogen in the conventional and the bio-organic cropping system

    Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance

    Get PDF
    Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG>CON>DYN>NON>MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26g Nm-2, with a decreasing trend in the order DYN=ORG>CON>MIN>NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixatio

    Signal Processing Challenges in Distributed Stream Processing Systems

    Get PDF
    Distributed stream processing represents a novel computing paradigm where data, sensed externally and possibly preprocessed, is pushed asynchronously to various connected computing devices with heterogeneous capabilities for processing. It enables novel applications typically characterized by the need to process high-volume data streams in a timely and responsive fashion. Some example applications include sensor networks, location-tracking services, distributed speech recognition, and network management. Recent work in large-scale distributed stream processing tackle various research challenges in both the application domain as well as in the underlying system. The main focus of this paper is to highlight some of the signal processing challenges such a novel computing framework brings. We first briefly introduce the main concepts behind distributed stream processing. Then we define the notion of relevant information from two related information-theoretic approaches. Finally, we browse existing techniques for sensing and quantizing the information given the set of classification, detection and estimation tasks, which we refer to as task-driven signal processing. We also address some of the related unexplored research challenges

    Rate distortion optimized graph partitioning for omnidirectional image coding

    Get PDF
    International audienceOmnidirectional images are spherical signals captured by cameras with 360-degree field of view. In order to be compressed using existing encoders, these signals are mapped to planar domain. A commonly used planar representation is the equirectangular one, which corresponds to a non uniform sampling pattern on the spherical surface. This particularity is not explored in traditional image compression schemes, which treat the input signal as a classical perspective image. In this work, we build a graph-based coder adapted to the spherical surface. We build a graph directly on the sphere. Then, to have computationally feasible graph transforms, we propose a rate-distortion optimized graph partitioning algorithm to achieve an effective trade-off between the distortion of the reconstructed signals, the smoothness of the signal on each subgraph, and the cost of coding the graph partitioning description. Experimental results demonstrate that our method outperforms JPEG coding of planar equirectangular images

    Securing Media for Adaptive Streaming

    Get PDF
    This paper describes the ARMS system which enables secure and adaptive rich media streaming to a large-scale, heterogeneous client population. The secure streaming algorithms ensure end-to-end security while the content is adapted and streamed via intermediate, potentially untrusted servers. ARMS streaming is completely standards compliant and to our knowledge is the first such end-to-end MPEG-4-based system

    Long-term organic matter application reduces cadmium but not zinc concentrations in wheat

    Get PDF
    Wheat is a staple food crop and a major source of both the essential micronutrient zinc (Zn) and the toxic heavy metal cadmium (Cd) for humans. Since Zn and Cd are chemically similar, increasing Zn concentrations in wheat grains (biofortification), while preventing Cd accumulation, is an agronomic challenge. We used two Swiss agricultural long-term field trials, the “Dynamic-Organic-Conventional System Comparison Trial” (DOK) and the “Zurich Organic Fertilization Experiment” (ZOFE), to investigate the impact of long-term organic, mineral and combined fertilizer inputs on total and phytoavailable concentrations of soil Zn and Cd and their accumulation in winter wheat ( L.). “Diffusive gradients in thin films” (DGT) and diethylene-triaminepentaacetic acid (DTPA) extraction were used as proxies for plant available soil metals. Compared to unfertilized controls, long-term organic fertilization with composted manure or green waste compost led to higher soil organic carbon, cation exchange capacity and pH, while DGT-available Zn and Cd concentrations were reduced. The DGT method was a strong predictor of shoot and grain Cd, but not Zn concentrations. Shoot and grain Zn concentrations correlated with DTPA-extractable and total soil Zn concentrations in the ZOFE, but not the DOK trial. Long-term compost fertilization led to lower accumulation of Cd in wheat grains, but did not affect grain Zn. Therefore, Zn/Cd ratios in the grains increased. High Zn and Cd inputs with organic fertilizers and high Cd inputs with phosphate fertilizers led to positive Zn and Cd mass balances when taking into account atmospheric deposition and fertilizer inputs. On the other hand, mineral fertilization led to the depletion of soil Zn due to higher yields and thus higher Zn exports than under organic management. The study supports the use of organic fertilizers for reducing Cd concentrations of wheat grains in the long-term, given that the quality of the fertilizers is guaranteed
    • …
    corecore