
SCHOOL OF ENGINEERING - STI
SIGNAL PROCESSING INSTITUTE
Christophe De Vleeschouwer and Pascal Frossard

CH-1015 LAUSANNE

Telephone: +4121 6932601

Telefax: +4121 6937600

e-mail: christophe.devleeschouwer@epfl.ch

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

EXPLICIT WINDOW-BASED TRANSPORT CONTROL

PROTOCOLS IN LOSSY ENVIRONMENTS

Christophe De Vleeschouwer and Pascal Frossard

Swiss Federal Institute of Technology Lausanne (EPFL)

Signal Processing Institute Technical Report

TR-ITS-2004.011

May 7th, 2004

Part of this work has been submitted to IEEE ICNP 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Explicit window-based transport control protocols
in lossy environments

Christophe De Vleeschouwer and Pascal Frossard
LTS4 - Signal Processing Institute - EPFL

1015 Lausanne, Switzerland

Abstract— This paper addresses efficient packet loss recovery
by retransmission in window-based congestion control protocols.
It builds on explicit congestion control mechanisms to decouple
the packet loss detection from the congestion feedback signals.
Implicit algorithms alternatively infer congestion from losses
(which yields to window size reduction), and therefore do not
allow to evaluate the performance of window-based transmission
algorithms in lossy environments. We first propose a simple
modification of TCP that offers the possibility for explicit
congestion control. Different retransmission strategies applicable
to window-based congestion control protocols are then discussed
in the framework of explicit congestion control. We introduce
a new early retransmission timer that significantly improves
the error resiliency when combined with explicit congestion
control. Extensive simulations then compare the error recovery
mechanisms generally used in recent TCP implementations, and
the new loss monitoring and recovery strategies, combined with
explicit congestion control protocols. Performances are analyzed
in a simple network topology where a bottleneck link is shared
by loss-free, and respectively lossy connections. Retransmissions
triggered by the proposed accurate loss monitoring mechanism
are shown to end up in a fair share of the bottleneck bandwidth
between all connections, even for high loss ratios and bursty loss
processes. The link utilization is in the same time close to optimal.
Explicit congestion control, combined with efficient error control
strategies, can therefore provide a valid solution to reliable and
controlled connections over lossy network infrastructures.

I. INTRODUCTION

Congestion control is imperative for the well-being of the
network. It prevents any one connection from swamping the
links and switches between communicating hosts with an
excessive amount of traffic. In essence, congestion control
prevents overwhelming the network with too many packets.
A natural way to achieve this goal is to limit the number of
packets that are in transit between the sender and the receiver.
Window-based congestion control mechanisms follow this idea
by limiting, for each connection, the number of transmitted
but yet to be acknowledged packets. Window-based protocol
achieve network stability by forcing the connection to obey a
’packet conservation’ principle, which means that a new packet
is not push into the network until an old packet leaves [18].

TCP is the window-based congestion control protocol used
for the Internet. TCP is an implicit end-to-end congestion
control [1] in the sense that the network components, i.e. the
routers, provide no explicit support to the transport layer for
congestion-control purposes. Congestion in the network must
be inferred by the end-systems based only on the observed

This work has been funded by the Swiss NSF and by the Belgian NSF.

network behavior, e.g. packet losses and delay. However, loss
is known to be a poor signal of congestion, because (i)
congestion is not the only source of losses, (ii) a loss is a
binary signal that do not provide precise congestion feedback,
(iii) the decision that a packet was lost cannot be made
quickly. For these reasons, TCP becomes inefficient and prone
to instability when the delay-bandwidth product increases, or
when packets are subject to non-congestion related losses.

Explicit congestion control mechanisms, where routers pro-
vide explicit feedback to the sender regarding the congestion
state, have been proved to solve the inefficiency and instability
problem related to (ii) and (iii) [11],[17]. As an example,
Katabi and al. [11] have designed an eXplicit Control Protocol,
XCP, where the network uses precise and explicit congestion
signaling to tell the senders how to react to the state of conges-
tion. The resulting protocol is both more responsive and less
oscillatory than conventional TCP, which becomes especially
beneficial when the delay-bandwidth product increases.

In this paper, we focus on the problem related to (i), i.e. to
the fact that all losses are not necessarily caused by congestion.
To illustrate the problem and motivate our study, we now
survey the efforts made to improve TCP performance over
lossy links. Because TCP interprets any kind of losses as a
congestion notification, without any precaution, TCP results in
flow starvation over lossy links. The problem is well-known,
especially in wireless environments. In the past decade, three
approaches have been considered to circumvent it [4]. The
first one consists in increasing link-layer reliability to hide
link-related losses from TCP sender [5], [2], [16]. The second
one splits the end-to-end connection, and terminate the TCP
connection at the base station to hide the lossy link from the
sender [3], [6]. The third approach attempts to give the TCP
sender the capability to handle non-congestion related losses
appropriately. Some schemes refine the TCP acknowledgments
to allow the TCP sender to recover from multiple losses
without resorting to a coarse timeout [15], [8], [14], while
others distinguish between congestion-related losses and other
forms of losses, either based on explicit loss notification [4],
or based on end-to-end bandwidth estimation [7].

Our work is related to the third approach in the sense that
we do not attempt to hide losses to the sender, but rather want
to give the sender the capability to handle them. However, our
work is quite different from the approaches described in [4],
essentially because our goal is not to improve TCP perfor-
mance, but rather to explore the limitations of the window-
based congestion control paradigm in lossy environments.

3

The two main sources of inefficiency for window-based
congestion control in presence of losses are (a) the erroneous
interpretation of a loss as a signal of congestion, which
wrongly ends up in congestion window deflation, and (b) the
fact that the congestion window is linked to the highest fully
acknowledged sequence of data segments, which prevents any
new transmission before a previously lost segment has been
successfully retransmitted. To circumvent the first issue, we
promote the use of explicit congestion control mechanisms.
For these protocols, as long as explicit information about
congestion is received by the sender, there is no reason for
the sender to infer the congestion state from losses or delay
measurements. Hence, losses are not specifically interpreted
as a congestion signal anymore, and do not cause congestion
window deflation. A major contribution of our work consists
in the evaluation of the potential of explicit congestion control
to address the problem related to non-congestion related
losses in a window-based transport paradigm. To address the
second issue, we envision the combination of retransmission
mechanisms with temporary increase of the sender window
in response to duplicate acknowledgments. In principle, the
approach is similar to the fast retransmit and fast recovery
mechanisms used in TCP Reno [1] or NewReno [9]. We show
however, and this is another important contribution of our
work, that an implementation dedicated to the explicit con-
gestion control framework ends up in substantial performance
improvements in comparison with a direct transposition of
TCP retransmission mechanisms. In addition, we quantify the
benefit brought by an accurate monitoring of losses, such as
offered by selective acknowledgment [15], or the identification
of the packet that triggered an acknowledgment [12].

The paper is organized as follows. Section II introduces
the framework of our study. It defines the state variables that
characterize a window-based connection, and presents two
explicit congestion control algorithms. The first one is the
eXplicit Control Protocol (XCP), introduced by Katabi and
al. [11]. The second one is an original proposal to make TCP
explicit. To make these protocols robust against losses, i.e. to
preserve their transport efficiency, Section III and IV identify
two kinds of loss-resilient mechanisms, depending on the
feedback information provided by receiver acknowledgments.
In Section III, similar to basic TCP, the receiver only informs
the sender about the latest data segment received in-sequence.
It does not identify the additional segments that might have
been received out-of-order, and cached at the receiver. In that
case, our contribution consists in exploiting the specificities of
an explicit control framework to improve the loss-resilience
mechanisms proposed in the TCP context. On the contrary,
in Section IV, the sender learns from the receiver feedback
which exact packets have reached the receiver. This additional
information is exploited to derive an original, and even more
efficient recovery mechanism. Section V and VI validate and
compare the two approaches based on NS simulations. They
demonstrate the potential of explicit window-based congestion
control algorithms in lossy environments. In addition, the
proposed eXplicit TCP protocol is shown to be able to co-exist
fairly with TCP, in a single queue of an XTCP-enabled router.
This is attractive w.r.t. its deployment. Section VII concludes.

II. EXPLICIT WINDOW-BASED CONGESTION CONTROL

FRAMEWORK

As mentionned in the introduction, the goal of our paper
is to explore the ability of window-based congestion control
protocols to support transmission losses. This section intro-
duces the envisioned framework. It first defines the main state
variables that characterize a window-based connection. Then,
it introduces two window-based congestion control algorithms.
These protocols are explicit, which means that the information
about the state of congestion is explicitly transmitted by the
routers to the sender via receiver acknowledgments. Explicit
protocols are of particular interest for the rest of our study
because they offer the possibility to decouple the congestion
control task from the loss detection (and recovery) process.
On the contrary, implicit algorithms, which infer congestion
from losses, are dominated by the reduction of the congestion
window size associated to losses, and consequently, have no
chance to be efficient in lossy environments.

A. Window-based protocols: Definitions

This section introduces a number of state variables that
characterize a window-based connection.

We limit our study to window-based control protocol based
on positive acknowledgment (ACK), i.e. for which the receiver
sends feedback information in response to correctly received
packets. The feedback information is based on the data se-
quence number and, possibly, on the packet sequence number,
read in the received packet header. These sequence numbers
are defined as follows.

The data sequence number associated to a packet, and
denoted dseqn, identifies the data segment conveyed by the
packet. Two transmissions of the same data are thus charac-
terized by the same data sequence number.

The packet sequence number, denoted pseqn, identifies
each packet sent by the sender. The packet sequence number
monotically increases with the time at which the packet is sent.
In practice, it corresponds to a counter incremented by one
each time a new packet is sent. Two packets that (re)transmit
the same data at different time instant have thus the same data
sequence number, but distinct sender sequence number. The
benefit that can be drawn from the packet sequence number
is described in Section IV.

Based on the data sequence number definition, a cumula-
tive acknowledgment equal to N indicates that all the data
segments with a data sequence number up to and including
N have been correctly received at the receiver. At any time,
the lack state variable records the largest cumulative acknowl-
edgement ever received by the sender.

By definition, window based congestion control limits the
number of transmitted-but-yet-to-be-acknowledged packets.
This number of permissible packets is referred to as the
congestion window size, and is generally denoted cwnd. This
variable is the one that constraints the rate of the connection
based on the network state of congestion. It is adjusted
based on the information explicitly received from the routers,
or implicitly inferred from the observation of the network
behavior (losses and delay).

4

In addition to the congestion window, we define the send-
out window, denoted swnd, so that all data with sequence
number lying between lack and lack + swnd are eligible for
being sent. In practice swnd ≥ cwnd, and the difference
between swnd and cwnd corresponds to data packets that
have already left the network, and are stored at the receiver.
Note that swnd is upper bounded by the receiver advertised
window, denoted rwnd, which reflects the buffer capacity at
the receiver.

The data sequence number of the next segment to be
considered for transmission by the sender is stored in the
nextseq state variable. We describe in Sections III and IV
how lack, swnd and nextseq are updated upon reception
of receiver acknowledgments, or upon timer expiration. This
determines the sender behavior as, after every update, the
data segments to send are identified as the ones whose data
sequence numbers lie between nextseq and last + swnd.

B. The eXplicit Control Protocol (XCP)

This section briefly reviews the eXplicit Control Protocol
(XCP) proposed in [11]. XCP is window-based, and controls
the size of the congestion window based on explicit and
accurate feedback from routers. In short, XCP is based on
a few bytes of control information conveyed in the packet
headers. To control the link utilization, routers inform the
senders about the degree of congestion at the bottleneck. In
a router, the feedback about congestion to be conveyed by
a packet is computed based on the mismatch between the
aggregate traffic rate and the link capacity, and is adjusted
according to the feedback delay expected for the packet. Fair-
ness is achieved based on reallocation of bandwidth between
individual flows. Extensive simulations demonstrate that XCP
maintains good utilization and fairness, while maintaining
small standing queue size. In particular, [11] shows that XCP
outperforms TCP when the per-flow delay-bandwidth product
becomes large.

C. Our proposed eXplicit TCP (XTCP)

In this section, we propose an explicit congestion control
protocol that adopts the exact same additive increase - multi-
plicative decrease behavior as TCP. The proposed protocol is
named eXplicit TCP (XTCP). By defining an explicit protocol
that is as close as possible to TCP, we plan to measure the
gain provided by an explicit feedback, independently of the
congestion control mechanism itself. Another advantage of a
TCP-like explicit protocol is related to deployment issues. This
will be further discussed in Section VI-A.

In short, the only difference between the proposed eXplicit
TCP and conventional TCP is the way the decision to decrease
the congestion window is taken. The TCP sender implicitly
infers congestion from a lost data [13]. On the contrary, XTCP
requires an explicit feedback from the routers to decrease its
congestion window. We have chosen a simple binary feedback
mechanism that, similar to TCP, indicates whether there is
congestion or not in the router. Hence, in absence of accurate
feedback, the sender has to probe the network to the point of
congestion before backing off, just as TCP.

In practice, the binary feedback is provided through a
congestion flag contained in the XTCP packet header. The flag
is initialized to zero by the sender, and is set to one when the
packet encounters a congested router. When received by the
receiver, the flag is copied in the ACK header, and returned to
the sender. Upon ACK reception, the sender decides whether
the congestion window should be decreased or increased based
on the congestion flag. Similar to TCP, the congestion window
is incremented each time an ACK with congestion flag set
to zero is received, and is divided by two when the sender
infers a congestion event based on the returned congestion
flags. By definition, a congestion event occurs when an ACK
with congestion flag set to one is received, and when the
latest congestion event is older than one RTT. This is to avoid
multiple backoffs during one RTT. In practice, an exponential
weighted average of the RTT samples is used to estimate RTT.
We can now explain how routers update the congestion flag.

Formally, a congestion counter is associated to every queue
in the network. Each time a queue drops a packet due to
congestion, the congestion counter associated to the queue is
incremented by one. When an XTCP packet leaves the queue
to be sent out to the output link, if the counter is positive,
the congestion flag of the XTCP packet is set to one, and the
counter is decremented by one1. It is worth noting that the
packet whose congestion flag is set to one does not necessarily
belongs to the same flow as the packet whose drop has caused
incrementation of the congestion counter. So, there is no need
to maintain per flow state in the router. Note also that XTCP
does not make any assumption about the queue management
discipline used in routers. In concrete terms, XTCP can be
used both with Droptail or RED policies.

Before exploring the performance of XCP and XTCP in
lossy environments, Section III and IV introduce the mech-
anisms that are expected to make explicit control protocols
robust in presence of losses.

III. LOSS-RESILIENCE BASED ON CUMULATIVE

ACKNOWLEDGMENT

Section III and IV present mechanisms that are expected
to preserve window-based connection efficiency in presence
of losses. In both sections, we consider an explicit congestion
control framework that offers the possibility to decouple the
congestion control task from the loss recovery process.

In this section, we assume that the receiver sends out the
largest possible cumulative acknowledgment upon reception
of a packet. Based on this limited feedback, we envision
four mechanisms to trigger the retransmission of a lost data
packet. The ideas behind the three mechanisms described in
Sections III-A, III-B, and III-D are familiar to TCP design-
ers [1], [9]. However, the fourth mechanism, described in
Section III-C, and its impact on the implementation of the
three other mechanisms, are specific to the explicit congestion
control framework envisioned in this work. The NS simu-
lations presented in Section V-B and VI-B reveal that this

1To make sure that we do not run in a situation where the counter is
positive, and the queue is empty, we only increment the counter if its current
value is smaller than the number of packets present in the queue.

5

timer significantly improves the performance of the transport
protocol in presence of losses. That is the reason why we
find important to explain in detail how these mechanisms
work and interact. To highlight our contribution, Section III-E
summarizes the differences between the TCP implementations
of fast retransmission mechanisms, and the approach described
in this paper.

A. Retransmission based on duplicate acknowledgment

This section describes how the principle underlying the fast
retransmit/fast recovery mechanism of TCP Reno are adapted
to an explicit congestion control framework. We observe that,
on the contrary to TCP Reno, the explicit congestion control
framework (i) does not need to halve the congestion window in
response to multiple duplicate ACKs; (ii) only partially deflate
the send-out window upon reception of a new ACK.

Readers that are familiar with TCP probably understand the
meaning and implications of these two points. Hence, they
can directly move to Section III-B. Other readers might be
interested in the following description.

In the absence of loss or packet reordering, any acknowl-
edgment indicates the correct reception of novel data at the re-
ceiver, and is referred to as a new ACK. In presence of losses,
this is not the case. The reception, at the receiver, of data that
have a higher data sequence number than not-yet-received data
triggers a duplicate acknowledgment. This duplicate ACK
actually re-acknowledges data for which the sender has already
received an acknowledgment. Upon reception of a duplicate
ACK, the sender infers that the data immediately following the
largest acknowledged data, i.e. the (lack +1)th data segment,
has either been delayed or lost by the network. In practice,
similar to the principle adopted by TCP Reno, our sender waits
for several duplicate ACKs before concluding the packet has
been lost, and retransmitting it. We denote dupackthreshold

the number of duplicate ACKs beyond which the sender infers
the loss of the (lack+1)th data segment. However, conversely
to TCP Reno, our sender can rely on the explicit feedback
provided by ACKs about congestion, and consequently, does
not need to halve the congestion window in response to a
detected loss.

Regarding the implementation, a counter, denoted dupacks

is initialized to zero and incremented by one every time a
duplicate acknowledgment reaches the sender. This counter is
reset to zero each time new data are acknowledged, or when
the connection is reset (see Section III-D). In addition, the
arrival of a duplicate acknowledgment at the sender indicates
that a packet has reached the receiver, and has thus left the
network. In accordance with the congestion window definition,
which limits the number of sent-but-not-yet-received packets,
a novel data packet can be sent out by the sender in response
to the arrival of a duplicate acknowledgment. This is done by
incrementing the send-out window swnd by one. Specifically,
swnd is monitored as the sum of cwnd and dupwnd, where
dupwnd denotes a counter initialized to zero and incremented
by one every time a duplicate ACK reaches the sender. The
dupwnd counter is reset to zero when the connection is reset.
Upon reception of new data acknowledgment, the head of the

send-out window is moved to the novel largest acknowledged
data segment, possibly overstepping a number of data seg-
ments whose earlier reception had triggered duplicate acks,
and caused dupwnd incrementation. To maintain the number
of sent-out-but-not-yet-received packets in the network equal
to the congestion window, dupwnd has thus to be decremented
by the amount of these segments that are now acknowledged,
but which triggered duplicate acks in the past. Let olack and
nlack respectively denote the last acknowledged data segment
before and after the reception of the new ACK. dupwnd

should then be decremented by nlack − (olack + 1) upon
reception of the new ACK. Note that the way dupwnd is
decremented differs from the classic implementation proposed
by TCP Reno [1], which simply resets dupwnd to zero
upon reception of a new ACK. This is further discussed in
Section III-E.

In the following, we present 3 other retransmission mech-
anisms, and consider their impact on the duplicate ACK
mechanism. In particular, Section III-B explains that the way
the dupacks and dupwnd counters are managed has to be
modified in presence of retransmission mechanisms based on
partial acknowledgments. Moreover, in Section III-D, we state
that dupacks and dupwnd should not be incremented in a
period immediately following the expiration of the connection
recovery timer.

B. Retransmission based on partial acknowledgment

This retransmission mechanism has been proposed by the
NewReno version of TCP [9], and is expected to help when
multiple packets are lost from a single window of data.
Readers familiar with TCP NewReno can immediately move
to Section III-C.

Among new data acknowledgments, NewReno distinguishes
between complete and partial acknowledgments. Let olack

and nlack respectively denote the largest data sequence num-
ber acknowledged before and after the reception of a new
ACK. A new ACK is defined to be a complete ACK if it
acknowledges all the intermediate data segments that have
been sent between the initial transmission of the (olack+1)th

segment and its last (re)transmission. On the contrary, a new
ACK is a partial acknowledgment if it only indicates the
correct reception of a subset of these segments. From a
practical point of view, the reception of a partial ACK means
that the (nlack + 1)th data segment has not been received at
the receiver at the time the (olack + 1)th was received. In
absence of packet reordering in the network, we interpret this
information as the loss of the (nlack + 1)th data segment.

To decide whether a new ACK is a partial or a complete
acknowledgment, the sender uses a state variable, denoted
recover, to remember the largest sequence number sent out
before the last retransmission of the next data to acknowledge,
i.e. of the (olack+1)th data segment. Specifically, every time a
data segment is retransmitted, either because a timer expires or
a retransmission mechanism becomes active, recover records
the largest data sequence number ever sent out by the sender.
When receiving a new ACK, the sender compares the novel
largest acknowledged data sequence number, i.e. nlack, with

6

the recover value. If nlack is strictly smaller than the recover

value, the sender infers that the new ACK is a partial acknowl-
edgment, and retransmits the (nlack + 1)th data segment.

It is worth noting that in presence of the partial acknowledg-
ment retransmission mechanism, the dupacks counter defined
in Section III-A should only be reset upon reception of a
complete acknowledgment. So, the acknowledgment of new
data by a partial acknowledgment should not cause a reset of
the dupacks counter. This is to avoid multiple retransmissions
of the same packet during the same round trip time, i.e. one
due to the partial ACK and the other due to dupacks reaching
dupackthreshold.

C. Early retransmission timer

Retransmission mechanisms based on duplicate acknowl-
edgments rely on the reception of several duplicate acks before
inferring that a packet has been lost. Hence, they are not
efficient for small congestion window sizes. Moreover, and
more important, the dupacks state variable is only reset to
zero after the acknowledgment of new data2. As a conse-
quence, retransmissions of subsequent lost segments rely on
the correct reception of the initial retransmitted segment. In
other words, retransmission mechanisms based on duplicate
ACKs do not support multiple loss of the same segment.
The same conclusion holds for the retransmission mechanism
described in Section III-B, and based on the arrival of partial
acknowledgments at the sender.

As retransmission mechanisms based on duplicate or partial
ACKs are vulnerable, we propose a retransmission mechanism
of last resort, based on a timer expiration. This timer, de-
noted early retransmission timer, is reset every time new
data are acknowledged -because the candidate segment for
retransmission changes as a consequence of the new ack-,
and every time a data segment is retransmitted. Note however
that the early retransmission timer is cancelled upon epiration
of the recovery timer (see Section III-D). Note also that the
early retransmission timer is not reset upon reception of a
duplicate ACK, except if the duplicate acknowledgment causes
a retransmission. Upon timer expiration, the (lack +1)th data
segment is retransmitted.

Regarding the implementation, the timer expires after a
timeframe called timeout. In practice, a short timeout results
in a fast retransmission, and in rapid loss recovery. However,
one should take care not to trigger retransmissions for packets
that are not lost, i.e. that are still in transit. In particular, an
important issue to consider when dealing with retransmission
based on a timer, is the stability issue. The problem comes
from the fact that a bad estimation of the timeout might cause
the sender to inject a new packet into the network before an
old one has exited, which is against the ’packet conservation
principle’ stated as a guarantee of stability for window-based
transport protocols [18]. To avoid this problem, the early
retransmission timeout has been set to a longer timeframe

2If dupacks was reset to zero immediately after the retransmission of
a packet, subsequent duplicate acknowledgments that correspond to the
same window of emission would trigger an additional and probably useless
retransmission.

than the timeout of the recovery timer defined in Section III-
D. This choice guarantees that, in case of trouble, e.g. due
to a bad round trip time estimation, the connection ends up
in a recovery phase, and does not swamp the network with
inadequate retransmissions. During our simulations, the early
retransmission timeout has been defined twice as large as the
recovery timeout. As told in Section III-D, both timeouts are
thus computed as a conservative estimation of the round trip
time (RTT). To validate this choice with regards to stability,
we have run a simulation in which some connections have
deliberatly under-estimate the round trip time when computing
the recovery and, consequently, the retransmission timeouts.
We have observed that these connections did not strangle other
connections, and that they were themselves strongly penalized
by regular expirations of the recovery timer. We have also
observed in the simulations presented in Sections V-B and
VI-B that the expiration of the retransmission timer is rare
and always appropriate. Hence, we conclude that defining the
retransmission timeout as a larger and scaled version of the
recovery timeout prevents unstable behavior of the system.

D. Mechanism of last resort: the recovery timer

In complement to retransmission mechanisms, a window-
based transport protocol resorts to a timer as a recovery
mechanism of last resort. This timer, denoted recovery timer,
is different from the one introduced in Section III-C, and is
present in all TCP implementations. We explain in this section
that, in an explicit congestion control framework, there is an
advantage to manage, i.e. to reset, the recovery timer in a
different way than for TCP.

Before going into the details of the recovery timer manage-
ment, we define its purpose. The recovery timer expiration
indicates that the connection stayed idle for a while, and has to
be reset. A connection reset consists in setting cwnd to one,
and nextseq to lack +1 (see definitions in Section II-A). The
timeout of the recovery timer is generally set to a conservative
estimation of the round trip time (RTT). In our simulations, we
have used the same timeout as the one proposed for TCP [13].
This timeout is defined as the sum of an exponential weighted
average of the RTT samples, and of an estimate of how much
the RTT samples deviate from this average.

We now analyze how to handle the recovery timer. From
our simulations, we have concluded that an appropriate man-
agement of the recovery timer is important to preserve the
connection efficiency in the presence of losses. In particular,
the strategies adopted to reset the recovery timer have to be
adapted to the explicit congestion control framework, and de-
pend on the presence or the absence of an early-retransmission
timer.

When an early retransmission timer is used, the recovery
timer can be reset both in response to a new ACK and to
a duplicate ACK. This is intuitively a good behavior in the
sense that the reception of acknowledgments by the sender
means that the connection is still on. Remember here that we
are considering explicit congestion control mechanisms, for
which information about the state of congestion is transmitted
by the routers to sender. So, as long as the sender receives

7

acknowledgments, it receives information about the state of
congestion. It should thus concentrate on recovering from
losses rather than deflating the congestion window in response
to duplicate ACKs.

On the contrary, in the absence of early retransmission timer,
we can not adopt this strategy because, in that case, there is
no way to retransmit a data segment that has been lost twice.
So, if the recovery timer was reset at every duplicate ACK, we
could run in a situation where dupwnd would go to infinity
(or at least a value that pushes swnd to rwnd), before the
recovery timer expires and permits the retransmission of the
lost packet. A better behavior is to trigger the recovery phase
earlier, i.e. as soon as we know that the segment has been
lost a second time. For this reason, the recovery timer is not
reset upon reception of a duplicate acknowledgment that does
not cause a retransmission. As a conclusion, in the absence
of early retransmission timer, the recovery timer is reset every
time a new ACK is received, but is only reset upon reception
of a duplicate ACK if this ACK triggers a retransmission. This
strategy is the one adopted by TCP.

We now describe some subtle issues associated to the
recovery timer expiration.

Upon expiration of the recovery timer, the connection is
fully reset. This implies cancellation of the potential early
retransmission timer.

After a timeout, nextseq is decremented to lack+1, which
means that data segments that have already been sent out,
and possibly received, can become eligible for retransmission
in the future. This particular condition lasts as long as lack

remains strictly smaller than the largest data sequence number
ever sent out by the sender at the time the recovery timer
expires. It is referred to as the recovery phase, and requires
particular attention from the sender.

During the recovery phase, the sender wants to avoid
retransmission of packets that have already been received.
For this reason, during recovery phase, we have decided to
constrain the sender to send out a single data segment, i.e. the
one labeled lack+1, in response to a new ACK or to an early
retransmission timer expiration. Note that the sender should
take care to update nextseq to lack+2 after a retransmission
triggered during the recovery phase.

An even more subtle issue related to the recovery phase is
referred to as ”bugfix” in TCP description [9]. It is related to
the fact that when the sender enters a recovery phase, there
might be packets or acknowledgments flowing between the
connection end-hosts. These packets trigger duplicate ACKs
that do not carry any information about the current state of
the connection. For this reason, during the recovery phase, the
sender should simply ignore duplicate acknowledgments.

E. Comparison between our retransmission strategy and TCP

As a summary, the main differences between the retrans-
mission/recovery mechanisms that we propose, and the ones
proposed for TCP result from (i) the fact that losses are
not immediately interpreted as a signal of congestion in
the explicit control framework, (ii) the presence of an early
retransmission timer and its impact on the recovery timer
management.

As it does not interpret losses as a signal of congestion, an
explicit control algorithm does not need to sharply reduce the
window in response to duplicate ACKs. This permit to keep
the connection active and efficient as long as sufficient ACKs
are received, i.e. as long as packets can flow over the network.

As explained in Section III-D the presence of an early
retransmission timer allows for a reset of the recovery timer
each time a new or a duplicate acknowledgment is received.
This, in turns, keeps the connection alive, and preserves
transmission efficiency. This is especially beneficial when
coupled with point (i), i.e. with the fact that an explicit control
framework does not have to deflate the congestion window in
response to duplicate ACKs.

Another difference is the way dupwnd is updated upon
reception of acknowledgments. In our proposal, dupwnd is
incremented in response to the very first duplicate acknowledg-
ment. So, we do not wait for dupackthreshold ACKs before
starting inflating the send-out window. Moreover, we always
consider partial deflation of dupwnd upon reception of a new
acknowledgment. In comparison, for TCP Reno, dupwnd is
simply reset to zero when a new ack is received. Our simu-
lations reveal that the benefit drawn from the partial deflation
of dupwnd, which had also been proposed by TCP NewReno,
is significant. But it is worth noting that the importance
of this benefit directly results from the explicit congestion
control framework, for which the congestion window is not
sharply deflated in response to duplicate ACKs. In the TCP
case, because duplicate ACKs are interpreted as a signal of
congestion, the congestion window gets smaller in response
to duplicate ACKs, which in turns decreases the send-out
window, and strongly reduces the benefit obtained from a
partial deflation of dupwnd.

Two other specificities of our implementation are (i) the
update of the congestion window in response to the explicit
feedback contained both in new and duplicate ACKs, and (ii)
the constraint to send out a single packet in response to a new
ACK during the recovery phase, despite a potential increase
of the congestion window.

IV. LOSS-MONITORING BASED ON ACCURATE RECEIVER

FEEDBACK

With the limited information available from cumulative
acknowledgments, a sender can only learn about a single lost
packet per round trip time. In this section, we envision more
detailed feedback to be sent by the receiver to the sender. The
main purpose of our study is to evaluate the benefit that can be
drawn from an accurate receiver feedback when the window-
based connection is subject to losses. As in Section III, we still
consider an explicit congestion control framework. Ultimately,
based on the mechanisms presented in this section, and on
the simulations presented in Section V and VI, our goal
is to discuss the conditions under which a window-based
transmission protocol based on explicit congestion control is
able to support connections over lossy links.

The section is split in two sub-sections. Section IV-A
presents the protocol that we have implemented to improve
the feedback provided by receiver acknowledgments, while

8

Section IV-B describes the loss retransmission mechanism that
we have specifically designed to exploit the novel information
available from the receiver.

A. Packet sequence number feedback

The main limitation of cumulative acknowledgments comes
from the fact that upon reception of a duplicate ACK, the
sender has no information to identify the packet that triggered
the ACK, and consequently, has no information to identify
the data segment that has reached the receiver. A simple way
to circumvent this limitation is to uniquely identify every
packet sent out on the network. In our simulator, this has been
done by adding a field to the packet header that contains its
packet sequence number. Remember from Section II-A that
the packet sequence number, denoted pseqn, is defined based
on a counter incremented by one each time a new packet
is sent. Every time the source sends a packet, it writes the
state of the counter in the packet header, and increments
the counter by one. This concept of packet sequence number
had been introduced by Keshav and Morgan [12] to design
efficient retransmission mechanisms in the context of rate-
based congestion control. On the contrary, we are interested
in window-based congestion control, for which the emission
of packets is directly related to the position of the send-
out window, which itself is linked to the largest cumulative
acknowledgment received by the sender. This makes the
problem much more complex than in a rate-based control
context, where the transmission of new packets and the loss
recovery mechanisms are totally decoupled [12].

Another way for the sender to learn about the data segments
that have reached the receiver is the selective acknowledgment
option proposed for TCP [15]. We expect that conclusions
drawn from our implementation could be generalized to a
SACK implementation.

Once informed about the data received, the sender can adopt
intelligent strategies to retransmit the missing data segments.
This is described in the next section.

B. Retransmission based on accurate loss-monitoring

Based on the feedback provided by the receiver about the
packets that have been received, both in order and out of order,
the sender is able to manage a loss-monitoring window. This
window stores information about the segments that are still
waiting for a cumulative ACK, and its size is thus bounded
by the largest number of out-of-sequence packets that can be
buffered at the receiver, i.e. by rwnd. In this section, we first
define how the loss-monitoring information is maintained. We
then explain how the information is exploited to trigger data
retransmissions.

Let N < rwnd denote the size in packets of the loss-
monitoring window. Given lack, the largest acknowledged
data sequence number, the loss-monitoring window stores a
state forall data sequence number j so that lack < j <

lack +1+N . In practice, we use a circling buffer to store the
state of the relevant data segments. Let W [.] be an array of
size N . At any time, W [j mod N] stores the loss-monitoring

window state corresponding to the jth data segment. Given
lack < j < lack+1+N , W [j mod N] is defined as follows:

• W [j mod N] = FREE, with FREE being a constant
flag value, when the jth data segment has not yet been
sent over the network;

• W [j mod N] = RECV , with RECV being a constant
flag value, when the jth data segment has been received
out of order by the receiver;

• W [j mod N] = X , with X > 0 being the packet se-
quence number of the latest packet sent over the network
and conveying the jth data segment, in other cases.

In practice, the loss-monitoring window state variable is
maintained as follows:

(a) First, each array position is initialized to the constant
FREE value, indicating that the array does not record
any state variable yet. Each block of the array is thus
available to store the state of future data segments.

(b) When a packet is sent out, the loss-monitoring window is
updated as follows. Let d denote the data sequence num-
ber of the data segment conveyed by the packet, and p be
the packet sequence number. Then, W [d mod N] ← p,
indicating that all packets with a packet sequence number
larger than p have been sent out after the last emission
of the dth data segment. Recording this information is
important w.r.t. the retransmission mechanism proposed
hereunder.

(c) Upon reception of a new ACK, the lack state variable is
updated. Let olack and nlack respectively denote the old
and new lack values. Hence, W [j], olack < j < nlack

is reset to FREE, indicating that the corresponding
positions of the array are now available to store the state
of future data segments. Note that before sending out
a new data segment on the network, let say the nth

segment, the sender has to check that W [n mod N] =
FREE, indicating that the new segment will not exceed
the storage capacity of the loss-monitoring window.

(d) Upon reception of a duplicate ACK, let p denote the
packet sequence number of the packet that triggered the
ACK. Remember p can be read from the header of
the received ACK, as described in Section IV-A. Let
then d = D[p] denote the data sequence number of
the data segment conveyed by the pth packet. Then,
W [d mod N] ← RECV to denote that the dth data
segment has been received by the receiver. Note that D[p]
is known at the sender, as the sender obviously knows
which data segment has been sent in a given packet.

Given W [.], the design of our proposed retransmission
mechanism is then guided by the following rules, stated in
terms of the dupackthreshold parameter:

• a data segment can only be retransmitted once the sender
has received dupackthreshold acknowledgments trig-
gered by packets that have been sent out later than the
data segment;

• we accept a maximum of one retransmission per
dupackthreshold acknowledgment.

To implement a retransmission mechanism that follow these
rules, we define a state variable, denoted rseqn, which denotes

9

the sequence number of the data segment that is expected to
be the best candidate for a retransmission. Among all data
segments monitored by the window W, rseqn is defined as
the one whose latest (re)transmission has been performed the
furthest in the past, and for which the sender has no indication
about reception by the receiver. Formally, given W[.], rseqn

is defined by:

rseqn = arg min
lack+1<j<lack+1+N, W [j]6=RECV/FREE

W [j] (1)

Let dupcount denote a counter which is incremented by
one every time an ACK triggered by a packet whose packet
sequence number is larger than W [rseqn] reaches the sender,
without indicating the correct reception of the rseqnth data
segment. The fact that the ACK has been triggered by a packet
with a larger sequence number than W [rseqn] means that
the ACK or packet corresponding to the last retransmission
of the rseqnth data segment has either been delayed or lost.
Once dupcount reaches dupackthreshold, the rseqnth data
segment is retransmitted. After a retransmission, or after the
sender received an ACK indicating the correct reception of
the rseqnth packet, dupcount is reset to zero and rseqn is
updated based on equation (1).

Before ending this section, it is worth mentionning that, as
in Section III-A, the send-out window is respectively inflated
or partially deflated in response to a duplicate ACK or to
a new ACK. The inflation/deflation process is important to
keep the connection active while lost packets are retransmit-
ted. Moreover, both the early retransmission timer and the
recovery timer defined in Section III-C and III-D are used in
conjunction with the retransmission mechanism based on the
loss-monitoring window. Note that, by definition, the early
retransmission timer is dedicated to the management of the
retransmission of the (lack + 1)th data segment. It is thus
reset upon retransmission of this segment only.

V. LOSS-RESILIENT EXPLICIT CONTROL PROTOCOL

This section uses simulations to explore the advantages
and limitations of the retransmission mechanisms presented
in Sections III and IV in the context of the eXplicit Control
Protocol (XCP) proposed in [11]. In Section V-A, we introduce
the terminology to denote the combinations of XCP with dif-
ferent retransmission mechanisms. In Section V-B, we discuss
the results obtained based on NS simulations, for different
protocols and error processes.

A. Loss-resilient XCP protocols definition

In this section we introduce the terminology used to denote
the transport protocols obtained when combining XCP with
loss retransmission mechanisms.

The acronyms used for the different combinations are
defined in Table I. In this table, XCP is used to denote
protocols that change neither the packet format, nor the
receiver behavior in comparison with the reference protocol
defined in [11]. On the contrary, LMXCP assumes that the
packet sequence number is conveyed by the packet header to
allow for efficient loss monitoring, as described in Section IV-
B. We use the prefix LR to distinguish the implementations

Acronym Definition

XCP dumb eXplicit Control Protocol with
retransmission and recovery mechanism implemented

as in TCP Reno, similar to [11]
XCP eXplicit Control Protocol

with retransmission and recovery mechanisms
adapted to the explicit congestion control

framework (see Section III-A)
XCP PA XCP + retransmissions based on

partial ACKs (see Section III-B)
LR-XCP XCP + early retransmission timer

(see Section III-C)
LR-XCP PA LR-XCP + retransmissions based on

partial ACKs
LR-LMXCP XCP + retransmissions based on accurate

loss-monitoring (see Section IV)

TABLE I

ACRONYMS FOR LOSS RESILIENT XCP PROTOCOLS.

with early retransmission timer (see Section III-C), and the
postfix PA to indicate that partial acknowledgments are used
to trigger fast retransmissions (see Section III-B). Eventualy,
XCP dumb refers to the implementation proposed in [11]. It
simply relies on the mechanisms implemented by TCP Reno
(cwnd decrease in response to duplicate ACKs, and dupwnd

reset to zero in response to a new ACK) to recover from losses,
without exploiting the advantages provided by an explicit
congestion framework w.r.t. loss resilience.

3
n/2+1

S
R

N

1

0

S

S

S

S

1

2

3

4

n

1N

Bottleneck
link

link
Loss−free

R R2 n/2

Rn

Lossy
link

N

N

2

R

Fig. 1. Network topology reflecting different users accessing a bottleneck
through links with different loss characteristics, e.g. wired and wireless.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

XCP - loss-free
XCP - lossy (0%)

Total

(a) No losses.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

XCP_dumb - loss-free
XCP_dumb - lossy (5%)

Total

(b) 5% losses.

Fig. 2. Sums of throughputs measured respectively for loss-free and lossy
flows. Throughputs are measured on the bottleneck link as a function of
time. By comparing (a) and (b), we observe that the presence of randomly
distributed losses on the lossy link causes starvation of the corresponding
flows.

B. Loss-resilient XCP simulations

This section presents results obtained based on NS simula-
tions. For simplicity, a single topology is considered through-
out the paper. This topology is represented in Fig. 1, where n

sources share a bottleneck link. Half of the flows ends up in
node N2, through a loss-free link, while the other half ends

10

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XCP_D1 - loss-free
LR-XCP_D1 - lossy (5%)

Total

(a) LR-XCP

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XCP_PA_D1 - loss-free
LR-XCP_PA_D1 - lossy (5%)

Total

(b) LR-XCP PA

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR_LMXCP_D1 - loss-free
LR_LMXCP_D1 - lossy (5%)

Total

(c) LR-LMXCP

Fig. 3. Sums of throughputs measured respectively for loss-free and lossy flows. Sums of throughputs are plotted as a function of time. In all graphs, the
dupackthreshold parameter is set to 1 (as indicated by D1).

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

XCP_dumb - loss-free
XCP_dumb - lossy

XCP_PA_D3 - loss-free
XCP_PA_D3 - lossy

LR-XCP_PA_D3 - loss-free
LR-XCP_PA_D3 - lossy

LR-LMXCP-D3 - loss-free
LR-LMXCP-D3 - lossy

Fig. 4. Sums of average throughputs computed respectively for loss-free and
lossy flows. Throughputs are averaged over a 120s period. Sums of average
throughputs are then plotted as a function of the rate of losses generated on
the lossy link. dupackthreshold = 3

up in node N3, across the lossy link. We refer to the flows
that go through the lossy (loss free) link as lossy (loss free)
flows. All links have a bandwidth equal to 5 Mbits/sec, and
are characterized by the same delay of 10ms, except when
explicitely mentioned. In the rest of the paper, the number
of sources n is equal to 10, and losses generated on the
lossy link are either randomly distributed (=default case), or
bursty (see Fig. 9). For most simulations, the performance
of loss-resilient protocols are estimated in terms of fairness
between lossy and loss-free flows, by comparing the sum of
bottleneck throughputs measured for lossy and loss-free flows.
Fair usage of the bottleneck reflects good performance of the
loss-resilience mechanisms.

Fig. 2 illustrates the problem encountered by the reference
implementation of XCP [11] in lossy environments. We ob-
serve that the presence of losses causes starvation of the lossy
flows. This is because, by default, the XCP loss recovery
mechanisms are the one optimized for TCP, and do not exploit
the explicit framework specificities. In Fig. 3 and 4, we analyze
how the presence of loss-resilient mechanisms dedicated to the
explicit control framework prevents this drawback.

In Fig. 3, we observe that all loss-resilient XCP protocols

significantly improve the fairness in comparison with Fig. 2(b).
We also observe that the accurate monitoring of losses per-
formed by LR-LMXCP mitigates the throughput fluctuations.

Fig. 4 and 5 compare the performance of the different
retransmission mechanisms in details. Fig. 4 compares, as
a function of the loss rate, and for the protocols defined in
Table I, the sum of bottleneck throughputs corresponding to
lossy flows with the one corresponding to loss-free flows.
Fig. 5 presents, for the protocols defined in Table I and for two
values of the dupackthreshold parameter, the fairness ratio
measured between lossy and loss-free flows as a function of
the loss rate. The fairness ratio between lossy and loss-free
flows is defined as the ratio between the sum of throughputs
measured respectively for lossy and loss-free flows on the
bottleneck link. We observe on both figures that LR-XCP PA
performs better than XCP PA. We conclude that the presence
of a retransmission mechanism based on a timer brings a sig-
nificant benefit. Fig. 5 also quantifies the benefit obtained when
partial acknowledgments (PA) are used in addition to duplicate
ACKs to trigger retransmissions. By comparing (LR-)XCP
with (LR-)XCP PA, we observe that partial acknowledgments
mainly help at high loss rates, i.e. when more than one packet
is likely to be lost in a single RTT. We also note that, in the
absence of retransmission timer, i.e. for XCP and XCP PA, and
when dupackthreshold = 3, partial ACKs do not help. This
is because in that case, the sender has little chance to enter
the fast recovery mode, i.e. to reset the recover parameter
(see Section III-B). In addition, Fig. 4 and 5 confirm that
a precise monitoring of losses, such as performed by LR-
LMXCP, is beneficial. Comparing graphs (a) and (b) in Fig. 5
shows that this is even more true when the dupackthreshold

parameter is set to 1. In that case, retransmissions are rapidly
triggered by LR-LMXTCP, and losses are rapidly recovered. If
needed, several different data segments might be retransmitted
in a single round trip time. On the contrary, even with a
smaller dupacktheshold, LR-XTCP can only consider the
retransmission of the (lack+1)th segment, and is thus limited
to a maximum of one retransmission per-round trip time.

Before going deeper into the analysis of the different loss
resilience mechanisms w.r.t. fairness, it is worth considering
the bottleneck link utilization of XCP in the presence of

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Fa
ir

ne
ss

 r
at

io

Error rate (%)

XCP_dum
XCP_D3

XCP_PA_D3
LR-XCP_D3

LR-XCP_PA_D3
LR-LMXCP-D3

(a) dupackthreshold=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Fa
ir

ne
ss

 r
at

io

Error rate (%)

XCP_dum
XCP_D1

XCP_PA_D1
LR-XCP_D1

LR-XCP_PA_D1
LR-LMXCP-D1

(b) dupackthreshold=1

Fig. 5. Fairness ratio measured between lossy and loss-free flows as a function of the loss rate, and dupackthreshold parameter.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XCP_PA_D1 - loss-free
LR-XCP_PA_D1 - lossy (5%)

Total

(a) LR-XCP PA

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XCPQ_PA_D1 - loss-free
LR-XCPQ_PA_D1 - lossy (5%)

Total

(b) LR-XCPQ PA

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

LR-XCP_PA_D1
LR-XCPQ_PA_D1

(c) Bottleneck utilization

Fig. 6. Comparison between an XCP router that minimizes the persistent queue, and an XCP router that targets a persistent queue of 10 packets. In these
graphs, the letter Q in LR-XCPQ PA denotes the use of an XCP router maintaining a persistent queue. (a) and (b) compare for both routers the sums of
throughputs measured respectively for loss-free and lossy flows. Losses are randomly generated with a 5% rate. Sums of throughputs are plotted as a function
of time. In all graphs, the dupackthreshold parameter is set to 1 (as indicated by D1). (c) plots the bottleneck link utilization as a function of the loss rate
for both systems.

losses. We observe in Fig. 2 and 3 that the total throughput
traces do not saturate at 5 Mbits/sec. We conclude that
the (loss-resilient) XCP protocols fail to achieve full link
utilization. This is confirmed by a deep analysis of Fig. 4.
When the loss rate increases, the sum of the loss-free and
lossy throughputs corresponding to a given protocol becomes
smaller than 5 Mbits/sec. Hence, the total bottleneck link
utilization decreases as the loss rate increases. We explain this
link utilization deficiency by the small queue sizes maintained
by XCP routers [11], which makes them unable to absorb rate
fluctuations, e.g. due to a recovery phase caused by packet
losses. A way to address this issue is to maintain non-zero
persistent queues in XCP routers.

To validate that idea, we have modified equation (1) in [11]
so that the efficiency controller targets both maximal link
utilization and a non-zero persistent queue. Specifically, Q is
replaced by (QEWA − γ) in equation (1) of [11], where γ

denotes the size in packets of the targetted persistent queue.
QEWA is defined based on the Q samples as follows. In [11],
a Q sample corresponds to the minimum queue seen by an
arriving packet during the last propagation delay. This defini-
tion results in large fluctuations of Q along the time. To derive

a stable signal from Q, we define QEWA as the exponential
weighted average of the Q samples, i.e. each time a new Q

sample is generated, QEWA is set to β.QEWA + (1− β).Q.
In our simulation, β has been set to 0.9, while the persistent
queue γ has been set to 10 packets. The thresholds defining
the RED queue policy [10] have been increased to take the
persistent queue into account.

Fig. 6 presents the results obtained with and without
persistent queues in XCP routers for the LR − XCP PA

protocol. We observe that the presence of persistent queues in
routers preserves the bottleneck link utilization. We conclude
that, even when accurate explicit feedback about congestion
is available, it is relevant to maintain persistent queues in
routers to absorb the unpredictable throughput fluctuations
resulting from packet losses, which might for example cause
the expiration of the recovery timer.

We now concentrate on the impact of protocol and simula-
tion parameters over the performance of LR-XCP and LR-
LMXCP. Again, the performance is estimated in terms of
fairness between lossy and loss-free flows.

Fig. 7 analyses the impact of the dupackthreshold param-
eter. This parameter ensures some robustness of the retrans-

12

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

B1 - loss-free
B1 - lossy
B2 - loss-free
B2 - lossy
B4 - loss-free
B4 - lossy

(a) LR-XCP

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

B1 - loss-free
B1 - lossy
B2 - loss-free
B2 - lossy
B4 - loss-free
B4 - lossy

(b) LR-XCP-PA

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

B1 - loss-free
B1 - lossy
B2 - loss-free
B2 - lossy
B4 - loss-free
B4 - lossy

(c) LR-LMXCP

Fig. 9. Impact on fairness of the bursty nature of losses appearing on the lossy link. The acronym BX, with X = 1, 2 or 4, means that each time a loss
event happens, X consecutive packets are dropped on the link. The loss rate refers to the product of loss event with the X parameter.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

LR-XCP_3D - loss free
LR-XCP_3D - lossy

LR-XCP_1D - loss free
LR-XCP_1D - lossy

(a) LR-XCP

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

LR-LMXCP_3D - loss free
LR-LMXCP_3D - lossy

LR-LMXCP_1D - loss free
LR-LMXCP_1D - lossy

(b) LR-LMXCP

Fig. 7. Impact of the dupackthreshold parameter on the fairness achieved
between lossy and loss-free flows. Traces are defined as in Fig. 4.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Receiver advertised window (packets)

LR-XCP_D1 - loss-free
LR-XCP_D1 - lossy (5%)

LR-XCP_PA_D1 - loss-free
LR-XCP_PA_D1 - lossy (5%)

LR-LMXCP_D1 - loss-free
LR-LMXCP_D1 - lossy (5%)

(a) LR-XCP

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Loss monitoring window (packets)

LR-LMXCP_D1 - loss-free
LR-LMXCP_D1 - lossy (5%)

LR-LMXCP_D3 - loss-free
LR-LMXCP_D3 - lossy (5%)

(b) LR-LMXCP

Fig. 8. Impact on fairness of the constraint imposed on the send-out window
by the receiver advertised window. dupackthreshold is set to one, and loss
rate is equal to 5%.

mission mechanisms against packet reordering. The larger the
parameter, the more robust the protocol. However, a very large
parameter would inhibit the retransmission mechanisms based
on duplicate or partial acknowledgments. Hence, the choice of
dupackthreshold trades off increased robustness to reordering
for improved transmission efficiency in presence of losses.
Fig. 7 shows that increasing the dupackthreshold from one
to three only reduces the performance of loss retransmission
mechanisms for high loss rates.

Fig. 8 measures the impact of the constraint imposed on the
sender by the receiver advertised window, denoted rwnd. This
window reflects the receiver buffer capacity, and corresponds
to the largest number of out-of-sequence packets that can be
buffered at the receiver [13]. It constrains the send-out window

of the sender and limits the number of packets the sender
can send in advance, while waiting for the recovery of a
lost packet. Fig. 8 shows that the performance of the loss-
resilience mechanisms only significantly degrades when the
constraint on the send-out window becomes of the same order
of magnitude as the congestion window. This observation is
important because it demonstrates that efficient loss resilient
mechanisms do not require large buffer from the end-hosts.

Fig. 9 analyzes how the burstiness of losses affects the
retransmission mechanisms. In these simulations, each loss
event on the lossy link causes the loss of X consecutive
packets, with X ranging from 1 to 4. As expected, we observe
that LR-XCP mechanisms are more sensitive to bursts of
losses than LR-LMXCP. This is because LR-XCP mechanisms
retransmit at most one packet per round trip time, and are
thus less efficient than LR-LMXCP when multiple losses occur
in the same window of data. Moreover, we observe that the
retransmission mechanism based on partial ACK is already
beneficial at low loss rates, when losses are bursty.

VI. LOSS-RESILIENT EXPLICIT TCP

In this section, we explore the behavior of our proposed
eXplicit TCP in presence of losses, and consider its grad-
ual deployment. Table II presents the acronyms that are
used to denote the combination of XTCP with different
loss-resilience mechanisms. The last acronym, namely LR-
LMXTCP TCPfriend, is defined in the next section.

Acronym Definition

LR-XTCP eXplicit TCP with early
retransmission timer (see Section III-C)

and recovery mechanisms adapted to
the explicit congestion control
framework (see Section III-A)

LR-XTCP PA LR-XTCP + retransmissions based on
partial ACKs (see Section III-B)

LR-LMXTCP eXplicit TCP + retransmissions based on accurate
loss-monitoring (see Section IV)

LR-LMXTCP LR-LMXTCP + mechanism to
-TCPfriend ensure TCP friendliness (see Section VI-A)

TABLE II

ACRONYMS FOR LOSS RESILIENT XTCP PROTOCOLS.

13

A. Gradual deployment: joint TCP and XTCP queuing

In this section, we describe a mechanism allowing end-to-
end loss resilient XTCP flows to compete fairly with TCP
flows. This mechanism allows TCP and loss-resilient XTCP to
co-exist in the same network, and provides a possible path for
incremental XTCP deployment. To start a loss-resilient XTCP
connection, the sender has to check whether the receiver and
the routers along the path are XTCP enabled. If they are not,
the sender reverts to TCP. As mentioned in [11], these kind
of checks can be done using TCP and IP options.

An XTCP-enabled router queues both TCP and XTCP
traffics together, in a single queue, but only incre-
ments/decrements the XTCP congestion counter when dealing
with XTCP packets. The change needed to make a router
XTCP-enabled is thus minor. We now extend the design of
loss-resilient XTCP to ensure that XTCP flows are TCP-
friendly. We illustrate our approach based on LR-LMXTCP.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 50 100 150 200 250 300

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP
TCP reno

Total

(a) LR-LMXTCP

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 50 100 150 200 250 300

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP - TCPfriend
TCP reno

Total

(b) LR-LMXTCP-TCPfriend

Fig. 10. Throughput traces showing how loss resilient XTCP competes
with TCP. (a) LR-LMXTCP is unfair to TCP, (b) LR-LMXTCP with artificial
backoff simulations achieves improved fairness.

Fig. 10 plots the sum of throughput measured on the bottle-
neck link, for TCP and LR-LMXTCP flows respectively. The
topology considered for this simulation is the one described
in Fig. 1. Routers obey a drop tail policy, and are XTCP-
enabled. All links are loss-free. Half of the flows are TCP
flows. The others are LR LMXTCP. In Fig. 10(a), we observe
that LR-LMXTCP flows achieve higher throughput than TCP
flows. This unfairness is mainly due to the different behavior
of LR-LMXTCP and TCP in front of (congestion) losses.
LR-LMXTCP handles losses in an efficient way, while TCP
generally resorts to a recovery phase when more than one loss
occur in a single flight of packets [1].

To validate this interpretation, we propose a simple change
to the design of the loss-resilient XTCP sender, so that
it triggers an artificial connection backoff when it detects
conditions for which TCP is expected to experience a timeout.
We use the LR-LMXTCP TCPfriend acronym to refer to this
version of LR-LMXTCP. We now define the artificial backoff
procedure, and explain when it has to be triggered.

The artificial backoff simulates the recovery process de-
scribed in Section III-D. It consists in resetting the congestion
window to one, but without resetting the nextseq state variable
to lack + 1. As in Section III-D, recphase is updated to the
largest data sequence number ever sent out by the sender,
and the congestion window is not adjusted based on received
acknowledgments as long as the lack state variable remains
smaller than recphase.

The artificial backoff is triggered when (i) a congestion flag
is received and (ii) either the congestion window is smaller
than dupackthreshold, or the previous congestion flag has
been received less than one RTT ago. These conditions reflect
the fact that a loss ends up in a recovery phase for TCP either
when the connection can not enter a fast recovery phase, or
when two packets are lost in a single RTT.

In Fig. 10(b), we observe that LR-LMXTCP TCPfriend
competes rather fairly with TCP.

B. Loss-resilient XTCP simulations

We analyze the behavior of loss resilient XTCP protocols,
based on simulations, with the topology described in Fig. 1.

Fig. 11(a) plots the throughputs measured over the bot-
tleneck link, respectively for loss-free and lossy flows, as
a function of the loss rate experienced on the lossy link.
Fig. 11(b) presents the same results in terms of fairness ratio
between lossy and loss-free flows. These plots are provided
for the five protocols defined in Table II. We observe that
TCP rapidly starves the lossy flows. We also observe that
the retransmission based on partial ACKs only improves LR-
XTCP beyond a sufficient loss rate. Moreover, we note that
an accurate feedback, as explored by LR-LMXTCP, brings
a significant improvement over approaches that are based
on cumulative ACKs. Because LR-LMXTCP preserves high
efficiency at high loss rates, we conclude that window-based
congestion control protocols, when coupled with a precise
feedback from the receiver, are able to support lossy envi-
ronments. In addition to these general conclusions, we also
observe in Fig. 11 that the TCP friendly version of LR-
LMXTCP performs even better than classic LR-LMXTCP.
The artificial backoffs introduced in the TCP friendly version
improve the fairness between loss-free and lossy flows.

Fig. 12 traces the sum of lossy and loss-free throughputs
as a function of time. We make two observations. First,
from the total aggregate throughput value, we observe that
all loss-resilient XTCP protocols achieve full utilization of
the bottleneck link. This is confirmed by Fig. 11(a), where
the sums of corresponding loss-free and lossy throughputs
equal the bottleneck link bandwidth, i.e. 5 Mb/s. Second,
based on graphs (c) and (d), we note that the TCP friendly
throughput fluctuates more than the non friendly one. This is
in accordance with what we expect from TCP-like connection
backoffs.

A last interesting behavior related to the TCP friendliness
is illustrated in Fig. 13. This figure plots the bottleneck link
utilization as a function of the link delay parameter, when
the droptail router queue size is fixed. As expected, the link
utilization degrades when the bandwidth-delay product of the
connection increases in comparison with the queue size. This
is because the queue becomes too small to absorb the reduction
of rate due to connection backoffs. We observe in Fig. 13
that LR-LMXTCP preserves higher utilization than TCP or
LR-LMXTCP TCPfriend. This was foreseeable as connection
backoffs are more frequent with TCP than with LR-LMXTCP,
which is able to face losses without resetting the connection.

14

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Error rate (%)

TCP Reno - loss-free
TCP Reno - lossy

LR-XTCP - loss-free
LR-XTCP - lossy

LR-XTCP_PA - loss-free
LR-XTCP_PA - lossy

LR-LMXTCP - loss-free
LR-LMXTCP - lossy

LR-LMXTCP-TCPfriend - loss-free
LR-LMXTCP-TCPfriend - lossy

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Fa
ir

ne
ss

 r
at

io

Error rate (%)

TCP Reno
LR-XTCP

LR-XTCP_PA
LR-LMXTCP

LR-LMXTCP-TCPfriend

(b) Fairness

Fig. 11. (a) Sum of throughputs measured for lossy and loss-free flows over the bottleneck as a function of the loss rate. Losses are randomly distributed.
The D3 postfix indicates that the dupackthreshold parameter is set to 3. (b) Fairness ratio measured between lossy and loss-free flows.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

TCP Reno - loss-free
TCP Reno - lossy (5%)

Total

(a) TCP

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-XTCP_PA - loss-free
LR-XTCP_PA - lossy (5%)

Total

(b) LR-XTCP-PA

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP - loss-free
LR-LMXTCP - lossy (5%)

Total

(c) LR-LMXTCP

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
B

its
/S

ec
)

Time (sec)

LR-LMXTCP-TCPfriend - loss-free
LR-LMXTCP-TCPfriend - lossy (5%)

Total

(d) LR-LMXTCP-TCPfriend

Fig. 12. Sum of loss-free and lossy flow throughputs as a function of time.
Losses are randomly distributed with a loss rate of 5%.

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70

B
ot

tle
ne

ck
 th

ro
ug

hp
ut

 (
M

b/
s)

Link delay (ms)

TCP Reno
 LR-LMXTCP - TCPfriend

 LR-LMXTCP

Fig. 13. Bottleneck link utilization as a function of the link delay parameter.
Queue size is fixed to 50 packets.

VII. CONCLUSIONS

We have studied packet retransmission mechanisms for
window-based explicit congestion control protocols. The main
objective was to explore whether the window-based transport
paradigm, based on the packet conservation principle, was able
to prevent connection starvation in the presence of losses.

We first discussed why and how the retransmission mech-
anisms differ in an implicit or explicit congestion control
framework. Explicit control avoids considering any loss as
a congestion signal. As a result, retransmissions can be
decoupled from the congestion control process. This offers
increased flexibility to implement retransmission mechanisms,
and allows designing algorithms that substantially improves
the performance in comparison with a simple transposition
of TCP recovery mechanisms. In particular, we have shown
that the introduction of an early retransmission timer brings
significant benefit over implementation of TCP-like mecha-
nisms that are suited for the explicit framework. In addition,
we have proposed a novel retransmission strategy based on
acknowledgments indicating which exact packet triggered the
ACK. The proposed scheme appears to be particularly well
suited to the explicit congestion framework, and substantially
improve the performance obtained based on cumulative ACKs.

As a conclusion, the proposed loss-resilience mechanisms
maintain close to optimal link utilization, and bottleneck re-
sources are fairly distributed among lossy and lossless connec-
tions. The combination of explicit control with dedicated re-
transmission mechanisms provides thus an interesting solution
to establish reliable and controlled window-based connections
in a lossy network. We have validated our approach through
simulations, both for the XCP protocol proposed in [11], and
for an original explicit TCP protocol. The proposed XTCP
protocol has been shown to be able to co-exist with TCP in a
single queue, and is thus amenable to gradual deployment.

15

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. In
RFC 2581, http://www.rfc-editor.org/rfc/rfc2581.txt, April 1999.

[2] E. Amir, H. Balakrishnan, S. Seshan, and R. Katz. Efficient TCP
over networks with wireless links. In Fifth workshop on Hot Topics
in Operating Systems, pages 35–40, May 1995.

[3] A.. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for mobile hosts.
In Proceedings of ICDCS, pages 136–143, May 1995.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A compari-
son of mechanisms for improving TCP performance over wireless links.
IEEE/ACM Transactions on Networking, 5(6):756–769, December 1997.

[5] H. Balakrishnan, S. Seshan, and R. Katz. Improving reliable transport
and handoff performance in cellular wireless networks. ACM Wireless
Networks, 1(4):469–481, February 1995.

[6] K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks.
IEEE/ACM SIGCOMM Computer Comm. Review, 27(5):19–43, Oct. 97.

[7] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang. TCP
Westwood: end-to-end bandwidth estimation for enhanced transport over
wireless links. Wireless Networks, 8(5):467–479, September 2002.

[8] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno,
and SACK TCP. SIGCOMM Comp. Comm. Rev., 26(3):5–21, July 96.

[9] S. Floyd and T. Henderson. The Newreno modification to TCP’s fast
recovery algorithm. In RFC 2582, April 1999.

[10] S. Floyd and V. Jacobson. Random Early Detection gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–
413, August 1993.

[11] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for
high bandwidth-delay product environments. ACM SIGCOMM, pages
89–102, Pittsburgh, August 2002.

[12] S. Keshav and S.P. Morgan. SMART retransmission: performance with
overload and random losses. INFOCOM’97, 3:1131–1138.

[13] J. F. Kurose and K. W. Ross. Computer Networking: a top-down
approach featuring the Internet. Addison Wesley, 2001.

[14] D. Lin and H.T. Kung. TCP fast recovery strategies: analysis and
improvements. In INFOCOM, volume 1, pages 263–271, March 1998.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective
acknowledgment options. In RFC 2018, October 1996.

[16] C. Parsa and J.J. Garcia-Luna-Aceves. Improving TCP performance over
wireless networks at the link layer. Mobile Networks and Applications,
5(1):57–71, March 2000.

[17] K.K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion
notification to IP. In RFC 2481, January 1999.

[18] Jacobson V. Congestion avoidance and control. In ACM SIGCOMM,
pages 314–329, Stanford, CA, September 1988.

