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Distributed stream processing represents a novel computing paradigm_| ( ) 777777 O ,,,,,,, O ,,,,, ) G_ N

where data, sensed externally and possibly preprocessed, is pushed® = elovant”
. . . . S : i

asynchronously to various connected computing devices with hetS§ 7

erogeneous capabilities for processing. It enables novel applica-—ﬁo’

tions typically characterized by the need to process high-volume

data streams in a timely and responsive fashion. Some example alp.- 1s le st . h: Th d th i
plications include sensor networks, location-tracking services, dis- g. L. >ample stréam processing graph: 1he nodes are the applica-

f[ributed speech _rec_ognition, and network management. Recent WOere]rcz;?gr?tg:es ?Jr?n?ge iﬂg\?jﬂfupsresigggle S;terﬁ%Tes' -I;ggeaSZ?rl]'Ca;'eo_n

in large-scale distributed stream processing tackle various researdf 9 » P y P 9

challenges in both the application domain as well as in the under?'¢€s-

lying system. The main focus of this paper is to highlight some

\?Jotrieb?:gngl p\;\c/):?iizltngriré?lallﬁ]r:?oedsuzgctm: r?}%‘fﬁ';;:‘;gu?sn%efﬁrr:ﬁé possibly reduced, but processing complexity is significantly in-
o gs. 4 ' P creased as deeper classification and detection operations are per-

distributed stream processing. Then we define the notion of relevagérmed on data aggregated over one or more streams

information from two related information-theoretic approaches. Fi- Consider an application that is interested in analyzing and corre-

nally, we browse existing techniques for sensing and quantizing th%ti

. . . e . o2 ng information from a large set of audio and chat streams. In this
information given the set of classification, detection and estimation. . early stages of processing may involve eliminating non-speech
tasks, which we refer to as task-driven signal processing. We alsg '

address some of the related unexblored research challenaes ata from large volumes of audio data via fast classification tech-
P ges. niques applied to the audio energy extracted directly from the com-

pressed domain, and later stages would involve converting the audio
1. INTRODUCTION d_ata into text (i.e._speech recognition) and performing (_jeeper analy-
sis on the transcribed text (Natural Language Processing, NLP) [1].
6Ifhis streaming application can be represented as a graph as shown
n Figure 1, where the nodes are the application operators and the

gregation and correlation over high-volume, unbounded, continuou%Olges represent the streams. Note that the application operators are

data such as documents, email, instant messages, transactional dglat,antlated on various, poss_lbly remote, processing d(_ewces.

digital audio, video and image data, network packet traces, and sep- The new paradlgm of Q|s.tr|buted stregm processing addresses
sor data. These applications process the streaming data in the contg_‘x?se appllcatlon characte_rlstlcs af‘d prowdes an elega_nt f_ramework
of a larger information mining system that tracks information rele- or enabling such challenging app_hcatlons. Section 2 hlgh_llghts the
vant to a large body of long-runningontinuousqueries on these key features of such systems and introduces related work in the area.

streaming data sources. Each of these applications can be view Iso defines the notion of relevant information from two related

as a processing pipeline which analyzes data from a set of raw daltgormatlon-theoretlc approaches. Relevant information plays a key

sources to extract relevant information. role in task-driven signal processing. Section 3 browses some of

Such applications provide challenges both in the application dot_he existing sensing and quantization strategies that factor in the set

main in terms of effective application composition for distributed of classification, detection and/or estimation tasks processing the

processing, and in the underlying system in terms of a wide ranggenSEd’ possibly compressed, |nforma_t|on. It addre_sses a few un-
. . . xplored research challenges from a signal processing perspective,
of resource requirements. For instance, on the data-ingest end, tﬁe

system has to deal with very high-throughput data containing a lof> generated by such a novel computing paradigm. Concluding re-

of irrelevant information which can be eliminated with limited pro- marks are given in Section 4.
cessing. Deeper into the processing pipeline however, data volume

Distributed Processing System

With the widespread use of digital systems, there is a large set
emerging applications that perform operations such as filtering, ad

2. INFORMATION PROCESSING

*This work has been partly supported by the Swiss National . o ) .
Science Foundation, under grant PP-002-68737. Contact authokarge-scale streaming applications are enabled by an underlying dis-
pascal.frossard@epfl.ch tributed stream processing system, which is the topic of Section 2.1.



https://core.ac.uk/display/147918107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

These applications define the relevant information that the sensingected distortion given the desired information rate in terms of the
and quantization algorithms should factor in. The notion of relevantate distortion function. The most common distortion measure is the
information is described in Section 2.2. mean square error (MSE), which represents the distortion incurred in
reconstructing the source from its compact representation. However,
it has long been recognized that MSE is not the most pertinent dis-
tortion measure when one is interested in the effect of compression
A distributed stream processing system provides the architectur@n decision making performance, rather than signal reconstruction.
substrate and services to enable the requirements of stream prdarious researchers have proposed different distortion measures for
cessing applications, where users sulmuittinuousjueries that are  assessing compression algorithms relative to detection, classification
evaluated over streams of data. The key challenges these systegiy other decision objectives in the rate distortion theory framework
address include highly varying processing and throughput requirgsee following subsections). Others have taken a different approach
ments across the processing pipeline, low response times when reley alleviating the need texplicitly specify a distortion function.
vant information is detected, scalability to support millions of simul- ~ Relevance through another variable: Tishby et al. [6] pro-
taneous queries, and widely distributed computing. posed a principled information-theoretic approach by introducing an
There has been a lot of recent work on distributed stream pr(ﬁdditionaﬂ variableY” that determines what is relevant. Thndor-
cessing systems, such as Aurora [2], Borealis [3] and Telegrapation bottlenecKIB) method. ThelB method is a general non-
CQ [4]. Distributed stream processing systems provide the frameParametric clustering framework. Given a joint distributjex, y)
work that deploys and runs stream-processing applications on var@f two (random) variablest andY’, it attempts to extract the rele-
ous resource topologies and delivers results to the users. Most of thant informationX thatX contains about". In [6] it is argued that
current systems take a database-centric approach where relatiommith the compactness of the representation and the preserved rele-
operators are applied to streaming data. Since relational operatovant information are naturally measured by the symmaetricual
are well-understood, the system can statically determine the optinformation(.;.), hence the above principle can be formulated as
mal ordering and placement of operators over the available resour@etrade-off between these quantities. TBeproblem can be stated
topology. Although some systems like Telegraph CQ provide dy-as finding a (stochastic) mappipgz|z) such that the IB-functional
namic adaptivity to available resources, they do not factor in ap£ = I(X; X) — I1(X;Y') is minimized, whereg3 is a positive La-
plication knowledge to achieve the best resource-to-accuracy tradgrange multiplier that determines the trade-off between compactness
offs. System S [5] makes an attempt in this direction by additionallyof the representation and its precision. It was shown that this prob-
providing hooks to the applications to determine current resourcem has an exact optimal (formal) solution without any assumption
usage so that they can use it to adapt suitably to achieve the besitout the origin of the joint distributiop(z, y) (see [7] for further
performance with the available resources. As the body of strearimformation) but may suffer for multiple minima (non-global conver-
processing applications is growing rapidly, these key issues must bgence) [8]. This method has been successfully employed in several
addressed more systematically. applications such as document categorization [9, 10], phoneme and
In this paper we focus on identifying and extracting relevant in-speaker recognition [11], and image clustering [12].
formation via sensing and quantization given downstream classifica-
ti_on, detection _and estim_ation tasks_. Thisis r_eferre_d tasiedri_ven 3. TASK-DRIVEN SIGNAL PROCESSING
signal processingOther important issues briefly discussed include

optimal composition of the processing graph and adapting proces§he set of processing operations in a distributed stream processing

ing during runtime so as to achieve the best resource-accuracy tradﬁistem is often not explicitly considered. This usually leads to in-

offs (see Section 3). efficient processing of the information captured by the distributed
sensors, or even an inefficient acquisition of the information. From
2.2. Relevant Information a signal processing perspective, this question should clearly be the
driver for the algorithms used to best sense the environment and opti-
Identifying the information that is relevant to the set of classifi- mally quantize the sensed information. We refer to such a framework
cation and estimation operations performed downstream is of crigstask-driven signal processing
cial importance so as to overcome the scalability challenge that dis-  Thjs section examines the problem of extracting a relevant sum-
tributed processing systems are facing. Indeed tremendous savingary of the information in the context of sensing and quantization
in network bandwidth, disk I/O and computing resources can be&trategies given downstream classification, detection and estimation
achieved by filtering out as much of the useless information as pogrocessing operators. The 'Discussions’ section addresses some of
sible; thereby possibly increasing the overall accuracy of the systene related unexplored research challenges.
which would otherwise blindly drop data to accommodate the avail-
able resources.
The notion ofrelevant informatiorcan be defined from two re-
lated information-theoretic approaches depending on whether or n@ata acquisition plays a central role in capturing the relevant infor-
a distortion measure is available. mation. Indeed the sensed information may be useless (or not as
Relevance through distortion: Rate distortion theory is the useful) if the characteristics of the task that processes it are not fac-
branch of information theory addressing the problem of determintored in the sensing process itself.
ing the minimal amount of entropy (or informatioR) that should A sensor network consists of a collection of sensor nodes dis-
be communicated over a channel such that the salirean be re-  tributed over a geographic area [13]. Each node has one or more
constructed at the receive¢ with given distortionD (X, X). As sensing devices (e.g., microphone, thermometer, camera), a wireless
such, rate distortion theory gives theoretical bounds for how mucltommunication device, simple processing capability, and a limited
compression can be achieved using lossy data compression metmergy supply. Though each node is an independent hardware de-
ods. Rate distortion theory determines the level of inevitable exvice, they must coordinate their sensing strategy in order to acquire

2.1. Distributed Stream Processing Systems

3.1. Sensing



the essential information about their environment, which is relevant However a distortion measure is not always readily available,
to a set of downstream tasks processing the sensed data. in which case the problem of task-driven quantization has to be ad-

Sensors typically provide the capability to self-organize theirdressed directly, by preserving the relevant information about an-
sensing and processing networks, possibly in a hierarchical wawther variable. The information bottleneck principle has been suc-
Self-organizing sensor networks may be built from sensor nodes thaessfully applied to various practical quantization problems. For ex-
may spontaneously create impromptu network, assemble the netmple, thesimpleagglomerative information bottleneck [23] method
work themselves, dynamically adapt to device failure and degraddias recently been applied to phoneme recognition and speaker iden-
tion, and react to changes in task and network requirements. Sontification [11]. In particular, the authors first performed a stan-
sensors are even capable of spatially organizing themselves (mobilard vector quantization of the cepstral feature set; then applied the
ity). The gateway node aggregates the (possibly pre-processed) daweethod on the clusters resulting from vector quantization such as
from the various sensors (or cluster heads in a hierarchical network) extract the relevant information for the task at hand (phoneme or
and streams it to distributed stream processing systems. speaker recognition).

Task-driven sensing [14] has been the subject of recent research
work. For example, the problem of counting the number of people ir8.3. Discussions
the workspace to monitor unusual activities via information gathered ] ) ] ]
by visual sensors has been addressed in [15]. Extracting the relevddst of the above work derive strategies for a single processing
information from visual sensors is critical because of the amOUnEf'ﬂ\Sk- D|Strlbl{ted stream processing systems typically perform mul-
of data each video camera captures. The authors solve a clusteritgle Processing operations either simultaneously on the same input
problem resulting from a well-defined distortion measure. In a morélata or sequentially on the data flowing through multiple processing
recent example [16], the authors proposed a distributed detection ajf2ges (directed acyclic graph). Therefore one must extend existing
gorithm applicable to highly decentralized architectures and showeti€ories and methods to accommodate for such complex environ-
that its performance were greatly improved by introducing a Sma|ment§. The theoretical foupdatlon along wlth sgveral quantlzatlpn
degree of randomness in the underlying connectivity, with which@lgorithms for the general simultaneous estimation and/or detection
the network attains desirable small-world characteristics. FinallyProblem(s) have recently been addressed in [24, 25]. The authors
researchers have also addressed enhancing the teleconference ehR Proposed and explored a compression approach to support se-
rience using readily available microphone arrays [17]. The author§uential inference tasks, referred totask-embedded compression
tackle time synchronization, localization, and distributed cascadebiowever, many problems remain open. For example, consider a cas-
beamforming in order to enhance audio perception (relevant inforc@de of detection tasks in which a task is triggered for processing
mation) in a self-organizing distributed system consistingvafo- qnly if the upstream task has detected an event (e.q., spe_ech recogni-
bile PC platforms each equipped with built-in microphone array fortion .for sele(;t subset of speakers.). A pos&b[e approach |s.to extract
recording acoustic signals and the capacity to support 5.1/7.1 chathe mformatlon relevant to a we_lghted function of the various tar-
nel audio outputs. Here, the notion of relevant information is directlyd®ts (i-e., Jack of All Tradessolution). However such an approach
related to human perception, which makes it difficult to formally de-may increase the false alarm ratef some detection tasks, resulting
fine a distortion measure. It must be noted that the information botln @n increased demand for computing resources of the downstream

tleneck method has not yet been applied to sensing strategies. processing operators, thereby potentially diverting system resources
away from processing tasks residing on the affected computing plat-

o forms. Another approach consists in providing each processing task
3.2. Quantization with the most relevant information in order to maximize its classi-
efi_cation accuracy. One potential solution to this problem has been
&gdressed in [26] in the context of scalable speech recognition. The
gthors considered two sequential speech recognition systems with
ery different resource requirements. They combine scalable recog-

The use of quantization is nearly always motivated by the need to r
duce the amount of data needed to represent (fidelity-based criteri
such as MSE) or process (distortion measure given the task at hand

signal. Quantization refers to the process of approximating a Contin_'tion with scalable compression in a distributed speech recognition
uous range of values (or a very large set of possible discrete valueg lication to reduce botr;1 the computational load gnd the ban%lwidth
by a relatively small set of discrete symbols or integer values. 1EPP P

. -~ _fequirements at the stream processing system.
may also be used to greatly reduce the complexity of the algorithms . o ; .
Y 9 y piexity g Also, relevant information is a function of the processing tasks

rocessing the quantized data (e.qg., via simple table lookups). . : L ; )
P Variougs resgarchers have sfhog\’/v,n that aFt)ask- driven ugn)tizati |Hstant|ated within the stream processing system. Those processing
- ; d asks depend on the queries submitted to the system at any point in
strategy usually leads to better decision-making performance thatn

the ordinary MSE Lloyd quantizer design [18] for signal processin ime. Clearly, USEr queries come anq go. One possible strategy to
. . S o S . “track relevant information is by resorting to a feedback loop. Feed-
tasks including statistical classification, estimation and modeling . ; .
Generic approaches for incorporating such tasks into the uantizgaCk comes at a cost (€.g., in terms of architectural complexity and
; PP PO g su - d Stability of the overall system). To the best of our knowledge, such
tion strategy by carefully choosing the distortion measure are sur-
veyed in [19] problems have not yet been addressed.

. . . Finally, distri ream pr in ms intr i-
Task-driven quantization has also been successfully applied tffon ally, distributed stream processing systems introduce add

e A al problems in terms of data losses and resource constraints,
specific appllcatlon_s. For .ex_ample, the_ authors O.f [20, 21] rece.ml)évhich processing operators have to cope with. Some recent stream
proposed an algorithm to jointly quantize acoustic sensor readin

N g rocessing systems [5] can provide information to processing oper-
and perform the task of source localization on those quantized obs gsy [5] P P gop

vations. In another example [22], the authors tackle quantizer desi diors about the available resources like CPU, memory usage and I/O

f K ificat N based daoted G ) . tgun[ilization, which could be used by the algorithms to achieve the best
or speaker verification systems based on adapted Gaussian mixtyy Source-to-accuracy tradeoffs.

models. Their quantization strategy minimizes the squared loss in
log-likelihood ratio, and was shown to trivialize to a conventional 1A false alarm occurs where a non-target event exceeds the detection cri-
weighted MSE quantizer. terion and is identified as a target.




4. CONCLUSIONS

Task-driven signal processing is an excitingly rich research field.
The primary objective of this position paper was to highlight some
of the existing research and unexplored challenges associated with

task-driven signal processing in distributed stream processing syg;

tems. This paper merely skims the surface of wealth of literature i

this

area.
We first presented the notion oflevant informatiorfrom two

1]

different information-theoretic approaches — the Rate Distortiord12]
(RD) theory and the Information BottleneckB) method. Armed

with this definition, we reviewed existing sensing and quantization
strategies designed for some specific classification, detection and/pir3]

estimation tasks.

Finally, we briefly described a few unexplored

challenges stream processing systems bring, including some beyond

the

scope of (yet related to) signal processing.
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