81 research outputs found

    High current and low q95 scenario studies for FAST in the view of ITER and DEMO

    Get PDF
    The Fusion Advanced Study Torus (FAST) has been proposed as a possible European satellite, in view of ITER and DEMO, in order to: a) explore plasma wall interaction in reactor relevant conditions b) test tools and scenarios for safe and reliable tokamak operation up to the border of stability c) address fusion plasmas with a significant population of fast particles. A new FAST scenario has been designed focusing on low-q operation, at plasma current IP=10 MA, toroidal field BT=8.5T, with a q95=2.3 that would correspond to IP=20 MA in ITER. The flat-top of the discharge can last a couple of seconds (i.e. half the diffusive resistive time and twice the energy confinement time), and is limited by the heating of the toroidal field coils. A preliminary evaluation of the end-of-pulse temperatures and of the electromagnetic forces acting on the central solenoid pack and poloidal field coils has been performed. Moreover, a VDE plasma disruption has been simulated and the maximum total vertical force applied on the vacuum vessel has been estimated

    Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings

    Get PDF
    Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well-watered and water-stressed) and phosphorus (P) applications (with and without P) on the morphological and physio-biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over-production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well-watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought-stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well-watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.Fil: Tariq, Akash. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; República de ChinaFil: Olatunji, Olusanya A. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Li, Zilong. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Li, Ningning. Southwest University; ChinaFil: Song, Dagang. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Sun, Feng. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Wu, Xiaogang. Chinese Academy of Sciences; República de ChinaFil: Dakhil, Mohammed A.. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; China. Helwan University; EgiptoFil: Sun, Xiaoming. Chinese Academy of Sciences; República de ChinaFil: Zhang, Lin. Chinese Academy of Sciences; República de Chin

    Bioquímica foliar e radicular de Stylosanthes scabra Vogel (Fabaceae) submetida ao déficit hídrico.

    Get PDF
    O objetivo do estudo foi avaliar alterações bioquímicas, foliares e radiculares de Stylosanthes scabra Vogel submetida a DH e reidratação (RI) em casa de vegetação

    Near term perspectives for fusion research and new contributions by the Ignitor program

    Get PDF
    The main advances made within the Ignitor program, that is aimed at investigating the physics of fusion burning plasmas near ignition, are described. In particular, the operation of the machine in the H and I regimes at the 10 MA plasma current levels has been considered and analyzed. The unique properties of the plasmas that can be generated by operating the machine with reduced parameters (lower magnetic fields and plasma currents) relative to those needed to achieve ignition are identified. A key feature of this operation is the relatively fast duty cycle that can be maintained. The Ideal Ignition Conditions, under which the density barrier due to bremsstrahlung emission in high density plasmas is removed, can be attained in this case. The plasma heating cycles are identified for which the contribution of ICRH is used both to enter the H-regime and to optimize the time needed for ignition. The on going effort to set up a test ICRH facility is described. The initial results (2 km/sec) of the high speed pellet injection system developed for Ignitor and operated at Oak Ridge are reported. The combined structural analysis and integration of the entire machine core (Load Assembly) is discussed. The adopted control system for both the machine and the plasma column has been designed and is described. The design solutions of the vertical field coils made of MgB2 and operating at 10 K have been identified and the relevant R&D program is underway. The analysis of the Caorso site and of its facility for the operation of the Ignitor with approved safety standards is completed. The relevant results are being made available for the operation of Ignitor at the Triniti site within the framework of the Italy-Russia agreement on the joint construction and operation of the Ignitor facility. A development effort concerning the advanced diagnostic systems that is being carried out for fusion burning plasma regimes is described. An initial analysis of the characteristics of a neutron source based on a system of Ignitor-like machines is reported

    Divertor of the European DEMO: Engineering and technologies for power exhaust

    Get PDF
    In a power plant scale fusion reactor, a huge amount of thermal power produced by the fusion reaction and external heating must be exhausted through the narrow area of the divertor targets. The targets must withstand the intense bombardment of the diverted particles where high heat fluxes are generated and erosion takes place on the surface. A considerable amount of volumetric nuclear heating power must also be exhausted. To cope with such an unprecedented power exhaust challenge, a highly efficient cooling capacity is required. Furthermore, the divertor must fulfill other critical functions such as nuclear shielding and channeling (and compression) of exhaust gas for pumping. Assuring the structural integrity of the neutron-irradiated (thus embrittled) components is a crucial prerequisite for a reliable operation over the lifetime. Safety, maintainability, availability, waste and costs are another points of consideration. In late 2020, the Pre-Conceptual Design activities to develop the divertor of the European demonstration fusion reactor were officially concluded. On this occasion, the baseline design and the key technology options were identified and verified by the project team (EUROfusion Work Package Divertor) based on seven years of R&D efforts and endorsed by Gate Review Panel. In this paper, an overview of the load specifications, brief descriptions of the design and the highlights of the technology R&D work are presented together with the further work still needed
    corecore