1,423 research outputs found

    Un "bocadito de huevo"

    Get PDF

    Time-resolved Ultraviolet Spectroscopy of the M-dwarf GJ 876 Exoplanetary System

    Get PDF
    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs aboard the Hubble Space Telescope, we have measured the 1150-3140A spectrum of GJ 876. We have reconstructed the stellar HI LyA emission line profile, and find that the integrated LyA flux is roughly equal to the rest of the integrated flux (1150-1210A + 1220-3140A) in the entire ultraviolet bandpass (F(LyA)/F(FUV+NUV) ~0.7). This ratio is ~ 2500x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) > 2000 K). We show the light-curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios >= 10. The strong FUV radiation field of an M-star (and specifically LyA) is important for determining the abundance of O2 -- and the formation of biomarkers -- in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.Comment: 6 pages, 4 figures. ApJL accepte

    Near-Infrared Spectroscopy of Low Mass X-ray Binaries : Accretion Disk Contamination and Compact Object Mass Determination in V404 Cyg and Cen X-4

    Full text link
    We present near-infrared (NIR) broadband (0.80--2.42 μ\mum) spectroscopy of two low mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H- and K-bands as 0.98±.050.98 \pm .05 and 0.97±.090.97 \pm .09, respectively. We remodeled the H-band light curve from \citet{sanwal1996} after correcting for the donor star contribution to obtain a new value for the binary inclination. From this, we determined the mass of the black hole in V404 Cyg to be MBH=9.0.6+.2MM_{BH}= 9.0^{+.2}_{-.6}M_{\odot}. We performed the same spectral analysis for Cen X-4 and found the spectral type of the donor star to be in the range K5 -- M1V. The donor star contribution in Cen X-4 is 0.94±.140.94\pm.14 in the H-band while in the K-band, the accretion disk can contribute up to 10% of the infrared flux. We remodeled the H-band light curve from \citet{shahbaz1993}, again correcting for the fractional contribution of the donor star to obtain the inclination. From this, we determined the mass of the neutron star as MNS=1.5.4+.1MM_{NS}= 1.5^{+.1}_{-.4}M_{\odot}. However, the masses obtained for both systems should be viewed with some caution since contemporaneous light curve and spectral data are required to obtain definitive masses

    A Survey of Far Ultraviolet Spectroscopic Explorer Observations of Cataclysmic Variables

    Full text link
    During its lifetime, the Far Ultraviolet Spectroscopic Explorer (FUSE) was used to observe 99 cataclysmic variables in 211 separate observations. Here, we present a survey of the moderate resolution (R\simeq10,000), far-ultraviolet (905 - 1188 {\deg}A), time-averaged FUSE spectra of cataclysmic variables (CVs). The FUSE spectra are morphologically diverse. They show contributions from the accretion disk, the disk chromosphere, disk outflows, and the white dwarf, but the relative contribution of each component varies widely as a function of CV subtype, orbital period and evolutionary state, inclination, mass accretion rate, and magnetic field strength of the white dwarf. The data reveal information about the structure, temperature, density and mass flow rates of the disk and disk winds, the temperature of the white dwarf and the effects of ongoing accretion on its structure, and the long-term response of the systems to disk outbursts. The complete atlas of time-averaged FUSE spectra of CVs are available at the Multimission Archive at Space Telescope Science Institute as a High Level Science Product.Comment: ApJS, in press. The extra panels in the figure sets for Figures 1 and 2 are included at the end of the manuscrip
    corecore