54 research outputs found
Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared
Traditional groups meetings are an inefficient and ineffective method for making forecasts and decisions. We compare two structured alternatives to traditional meetings: the Delphi technique and prediction markets. Delphi is relatively simple and cheap to implement and has been adopted for diverse applications in business and government since its origins in the 1950s. It can be used for nearly any forecasting, estimation, or decision making problem not barred by complexity or ignorance. While prediction markets were used more than a century ago, their popularity waned until more recent times. Prediction markets can be run continuously, and they motivate participation and participants to reveal their true beliefs. On the other hand, they need many participants and clear outcomes in order to determine pay-offs. Moreover, translating knowledge into a price is not intuitive to everyone and constructing contracts that will provide a useful forecast may not be possible for some problems. It is difficult to maintain confidentiality with markets and they are vulnerable to manipulation. Delphi is designed to reveal panelists’ knowledge and opinions via their forecasts and the reasoning they provide. This format allows testing of knowledge and learning by panelists as they refine their forecasts but may also lead to conformity due to group pressure. The reasoning provided as an output of the Delphi process is likely to be reassuring to forecast users who are uncomfortable with the “black box” nature of prediction markets. We consider that, half a century after its original development, Delphi is under-utilized
Recommended from our members
Performance Comparison Between Isothermal Hot Corrosion And In Situ Cyclic Hot Corrosion of Nickel-Based Superalloys
Although a lot of work has been done to understand both major mechanisms of hot corrosion, namely type I (high-temperature hot corrosion) and type II (low temperature hot corrosion), there is very little information available on more representative cyclic performance in these regimes. This work addresses this by assessing the performance of isothermal (type I and type II) hot corrosion tests against combined (short and long) cyclic corrosion tests. Single-crystal alloy PWA 1484 and directionally solidified alloy MAR-M247 were assessed in all test regimes. Pre- and post-exposure dimensional metrology was used to quantify the corrosion damage and characterised using SEM/EDX. This paper highlights that the results of short cycle test conditions are more damaging compared to long cycle and standard isothermal type I and II test conditions. The cast nickel-based alloy MAR-M247 was found to be a better performer compared to PWA 1484 single-crystal alloy
Recommended from our members
Performance Comparison Between Isothermal Hot Corrosion And In Situ Cyclic Hot Corrosion of Nickel-Based Superalloys
Although a lot of work has been done to understand both major mechanisms of hot corrosion, namely type I (high-temperature hot corrosion) and type II (low temperature hot corrosion), there is very little information available on more representative cyclic performance in these regimes. This work addresses this by assessing the performance of isothermal (type I and type II) hot corrosion tests against combined (short and long) cyclic corrosion tests. Single-crystal alloy PWA 1484 and directionally solidified alloy MAR-M247 were assessed in all test regimes. Pre- and post-exposure dimensional metrology was used to quantify the corrosion damage and characterised using SEM/EDX. This paper highlights that the results of short cycle test conditions are more damaging compared to long cycle and standard isothermal type I and II test conditions. The cast nickel-based alloy MAR-M247 was found to be a better performer compared to PWA 1484 single-crystal alloy
Mechanism of Heparin Acceleration of Tissue Inhibitor of Metalloproteases-1 (TIMP-1) Degradation by the Human Neutrophil Elastase
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k2 = 21±1 s−1) was much higher than the HNE deacylation step (k3 = 0.57±0.05 s−1). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k1 2.4-fold and reducing k−1 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k2 value, whereas the k3 value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs
- …