42 research outputs found

    X-ray and Synchrotron FTIR Studies of Partially Decomposed Magnesium Borohydride

    Get PDF
    Magnesium borohydride (Mg(BH4)(2)) is an attractive compound for solid-state hydrogen storage due to its lucratively high hydrogen densities and theoretically low operational temperature. Hydrogen release from Mg(BH4)(2) occurs through several steps. The reaction intermediates formed at these steps have been extensively studied for a decade. In this work, we apply spectroscopic methods that have rarely been used in such studies to provide alternative insights into the nature of the reaction intermediates. The commercially obtained sample was decomposed in argon flow during thermogravimetric analysis combined with differential scanning calorimetry (TGA-DSC) to differentiate between the H-2-desorption reaction steps. The reaction products were analyzed by powder X-ray diffraction (PXRD), near edge soft X-ray absorption spectroscopy at boron K-edge (NEXAFS), and synchrotron infrared (IR) spectroscopy in mid- and far-IR ranges (SR-FTIR). Up to 12 wt% of H-2 desorption was observed in the gravimetric measurements. PXRD showed no crystalline decomposition products when heated at 260-280 degrees C, the formation of MgH2 above 300 degrees C, and Mg above 320 degrees C. The qualitative analysis of the NEXAFS data showed the presence of boron in lower oxidation states than in (BH4)(-). The NEXAFS data also indicated the presence of amorphous boron at and above 340 degrees C. This study provides additional insights into the decomposition reaction of Mg(BH4)(2)

    Fish Intelligence, Sentience and Ethics

    Get PDF
    Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any nonhuman vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate

    Microsatellite Support for Active Inbreeding in a Cichlid Fish

    Get PDF
    In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences

    Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands

    Get PDF
    Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity

    The relative importance of prey‑borne and predator‑borne chemical cues for inducible antipredator responses in tadpoles

    Full text link
    Chemical cues that evoke anti-predator developmental changes have received considerable attention, but it is not known to what extent prey use information from the smell of predators and from cues released through digestion. We conducted an experiment to determine the importance of various types of cues for the adjustment of anti-predator defences. We exposed tadpoles (common frog, Rana temporaria) to water originating from predators (caged dragonfl larvae, Aeshna cyanea) that were fed different types and quantities of prey outside of tadpolerearing containers. Variation among treatments in the magnitude of morphological and behavioural responses was highly consistent. Our results demonstrate that tadpoles can assess the threat posed by predators through digestionreleased, prey-borne cues and continually released predator-borne cues. These cues may play an important role in the fie-tuning of anti-predator responses and signifiantly affect the outcome of interactions between predators and prey in aquatic ecosystems. There has been much confusion regards terminology used in the literature, and therefore we also propose a more precise and consistent binomial nomenclature based on the timing of chemical cue release (stress-, attack-, capture-, digestion- or continually released cues) and the origin of cues (prey-borne or predator-borne cues). We hope that this new nomenclature will improve comparisons among studies on this topic

    Experimental and computational characterization of phase transitions in CsB3H8

    No full text
    Metal hydroborates are versatile materials with interesting properties related to energy storage and cation conductivity. The hydrides containing B3H8- (triborane, or octahydrotriborate) ions have been at the center of attention for some time as reversible intermediates in the decomposition of BH4- (3BH4- \u2194 B3H8- + 2H2), and as conducting media in electrolytes based on boron-hydride cage clusters. We report here the first observation of two phase transitions in CsB3H8 prior to its decomposition above 230 \ub0C. The previously reported orthorhombic room temperature phase (here named \u3b1-CsB3H8) with the space group Ama2 changes into a new phase with the space group Pnma at 73 \ub0C (here named \u3b2-CsB3H8), and then into a face-centered cubic phase, here named \u3b3-CsB3H8, at 88 \ub0C. These phases are not stable at room temperature thus requiring in situ measurements for their characterization. The phase transitions and decomposition pathway of CsB3H8 were studied with in situ synchrotron powder X-ray diffraction (SR-PXD), in situ and ex situ vibrational spectroscopies (Raman and FTIR), and differential-scanning calorimetry combined with thermo-gravimetric analysis (DSC-TGA). The structure determination was validated by vibrational spectroscopy analysis and modeling of the periodic structures by density functional methods. In \u3b3-CsB3H8, a significant disorder in B3H8- positions and orientations was found which can potentially benefit cation conducting properties through the paddle mechanism

    Technical and conceptual considerations for using animated stimuli in studies of animal behavior

    No full text
    Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior

    Effect of paramagnetic ferrocenium cations on the magnetic properties of the anionic single molecule magnet [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)4](-)

    No full text
    The preparation and physical characterization are reported for the single-molecule magnet salts [M(Cp')(2)](n)()[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (M = Fe, n = 1, Cp' = C(5)Me(5) (2a), C(5)H(5) (2b); M = Co, n = 1, Cp' = C(5)Me(5) (2c), C(5)H(5) (2d); M = Fe, n = 2, Cp' = C(5)Me(5) (2e), C(5)H(5) (2f)) to investigate the effects of paramagnetic cations on the magnetization relaxation behavior of [Mn(12)]- anionic single-molecule magnets. Complex 2a.2H(2)O crystallizes in the orthorhombic space group Aba2, with cell dimensions at 173 K of a = 25.6292(2) A, b = 25.4201(3) A, c = 29.1915(2) A, and Z = 4. Complex 2c.2CH(2)Cl(2).C(6)H(14) crystallizes in the monoclinic space group P2(1)/c, with cell dimensions at 173 K of a = 17.8332(6) A, b = 26.2661(9) A, c = 36.0781(11) A, beta = 92.8907(3) degrees, and Z = 4. These two salts consist of either paramagnetic [Fe(C(5)Me(5))(2)]+ cations or diamagnetic [Co(C(5)Me(5))(2)]+ cations, and [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)]- anions. The structures of the anions in the two salts are similar, consisting of a central Mn(4)O(4) cubane moiety, surrounded by a nonplanar ring of eight Mn atoms that are bridged by and connected to the cube via mu(3)-O(2)- ions. The oxidation states of four Mn sites out of eight outer Mn ions in complex 2a were assigned to be +2.75 from the valence bond sum analysis although the disordering of bridging carboxylates prevents more precise determination. On the other hand in complex 2c, one Mn site out of eight outer Mn ions was identified as a Mn(II) ion, accommodating the "extra" electron; this was deduced by a valence bond sum analysis. Thus, the anion in complex 2c has a Mn(II)(1)Mn(III)(7)Mn(IV)(4) oxidation state description. The Jahn-Teller axes of the Mn(III) ions in both anions are roughly aligned in one direction. All complexes studied exhibit a single out-of-phase ac magnetic susceptibility (chi"(M)) signal in the 4.6-4.8 K range for complexes 2a-2d and in the 2.8-2.9 K range for complexes 2e and 2f at 1 kHz ac frequency. The temperature of the chi"(M) peaks is frequency dependent, as expected for single-molecule magnets. From Arrhenius plots of the frequency dependence of the temperature of the chi"(M) maxima, the effective energy barriers U(eff) for changing spin from "up" to spin "down" were estimated to be 50-54 K for complexes 2a-2d and 27-28 K for complexes 2e and 2f. The least-squares fits of the reduced magnetization data indicate that both complexes 2a and 2d have ground states of S = (21)/(2). High-frequency EPR spectra were recorded for complex 2a at frequencies of 217, 327, and 434 GHz in the 4.5-30 K range. The observed transition fields were least-squares fit to give g = 1.91, D = -0.35 cm(-1), and B(4)(0) = -3.6 x 10(-7) cm(-1) for the S = (21)/(2) ground state. The effective energy barrier U(eff) is slightly lower than U estimated from D, which is consistent with the thermally assisted tunneling model. Magnetization hysteresis loops were observed for complexes 2a and 2c. Although 2a was oriented in a different manner as expected by strong magnetic field, both complexes show clear hysteresis loops with some steps on them, indicating that the effect of the magnetic cation on the magnetization relaxation of the anionic [Mn(12)]- complex is rather small. An 11% (57)Fe enriched complex 2b was studied by means of M\uf6ssbauer spectroscopy down to as low as 1.7 K. Slow paramagnetic relaxation broadening and magnetic hyperfine splitting were evident in the low-temperature spectra, indicating that the iron atoms feel a growing magnetic field owing to slow magnetization reversal in the [Mn(12)]- anions
    corecore