597 research outputs found

    Drug transporter regulation in tumors by DNA methylation

    Get PDF
    Epigenetic alterations, such as aberrant DNA methylation, are a hallmark of cancer. DNA hypermethylation of the promoter region affects, for example, the expression of tumor suppressor genes and is associated with their transcriptional silencing in tumors. A recent report has provided evidence for epigenetic silencing of the multispecific organic cation transporter SLC22A1 in hepatocellular carcinoma. Given the role of this transporter in the cellular uptake of several anticancer drugs, the study provided a novel mechanism to explain the substantial variability in treatment response, and it might provide a new strategy for optimization of pharmacotherapy of hepatocellular carcinoma

    Renal Transporter-Mediated Drug-Biomarker Interactions of the Endogenous Substrates Creatinine and N1 -Methylnicotinamide : A PBPK Modeling Approach

    Get PDF
    Endogenous biomarkers for transporter-mediated drug-drug interaction (DDI) predictions represent a promising approach to facilitate and improve conventional DDI investigations in clinical studies. This approach requires high sensitivity and specificity of biomarkers for the targets of interest (e.g., transport proteins), as well as rigorous characterization of their kinetics, which can be accomplished utilizing physiologically-based pharmacokinetic (PBPK) modeling. Therefore, the objective of this study was to develop PBPK models of the endogenous organic cation transporter (OCT)2 and multidrug and toxin extrusion protein (MATE)1 substrates creatinine and N1-methylnicotinamide (NMN). Additionally, this study aimed to predict kinetic changes of the biomarkers during administration of the OCT2 and MATE1 perpetrator drugs trimethoprim, pyrimethamine, and cimetidine. Whole-body PBPK models of creatinine and NMN were developed utilizing studies investigating creatinine or NMN exogenous administration and endogenous synthesis. The newly developed models accurately describe and predict observed plasma concentration-time profiles and urinary excretion of both biomarkers. Subsequently, models were coupled to the previously built and evaluated perpetrator models of trimethoprim, pyrimethamine, and cimetidine for interaction predictions. Increased creatinine plasma concentrations and decreased urinary excretion during the drug-biomarker interactions with trimethoprim, pyrimethamine, and cimetidine were well-described. An additional inhibition of NMN synthesis by trimethoprim and pyrimethamine was hypothesized, improving NMN plasma and urine interaction predictions. To summarize, whole-body PBPK models of creatinine and NMN were built and evaluated to better assess creatinine and NMN kinetics while uncovering knowledge gaps for future research. The models can support investigations of renal transporter-mediated DDIs during drug development

    Transport of Drugs and Endogenous Compounds Mediated by Human OCT1: Studies in Single- and Double-Transfected Cell Models

    Get PDF
    Organic Cation Transporter 1 (OCT1, gene symbol: SLC22A1) is predominately expressed in human liver, localized in the basolateral membrane of hepatocytes and facilitates the uptake of endogenous compounds (e.g. serotonin, acetylcholine, thiamine), and widely prescribed drugs (e.g. metformin, fenoterol, morphine). Furthermore, exogenous compounds such as MPP+, ASP+ and Tetraethylammonium can be used as prototypic substrates to study the OCT1-mediated transport in vitro. Single-transfected cell lines recombinantly overexpressing OCT1 (e.g., HEK-OCT1) were established to study OCT1-mediated uptake and to evaluate transporter-mediated drug-drug interactions in vitro. Furthermore, double-transfected cell models simultaneously overexpressing basolaterally localized OCT1 together with an apically localized export protein have been established. Most of these cell models are based on polarized grown MDCK cells and can be used to analyze transcellular transport, mimicking the transport processes e.g. during the hepatobiliary elimination of drugs. Multidrug and toxin extrusion protein 1 (MATE1, gene symbol: SLC47A1) and the ATP-driven efflux pump P-glycoprotein (P-gp, gene symbol: ABCB1) are both expressed in the canalicular membrane of human hepatocytes and are described as transporters of organic cations. OCT1 and MATE1 have an overlapping substrate spectrum, indicating an important interplay of both transport proteins during the hepatobiliary elimination of drugs. Due to the important role of OCT1 for the transport of endogenous compounds and drugs, in vitro cell systems are important for the determination of the substrate spectrum of OCT1, the understanding of the molecular mechanisms of polarized transport, and the investigation of potential drug-drug interactions. Therefore, the aim of this review article is to summarize the current knowledge on cell systems recombinantly overexpressing human OCT1

    Inconsistencies and ambiguities in liver-disease-related contraindications: a systematic analysis of SmPCs/PI of Major Drug Markets

    Get PDF
    Liver disease is a common condition worldwide that can cause alterations in drug disposition and susceptibility to drug toxicities, with increased risk of adverse drug reactions. European Summaries of Product Characteristics (SmPCs) and United States Prescribing Information (US PI) should therefore be comprehensible to prescribers regarding their liver-associated contraindications to ensure safe prescribing. This study aimed to evaluate the ambiguity of terminology used in communicating liver-associated absolute contraindications in SmPCs/PI of commonly prescribed drugs in four major drug markets (Germany, Switzerland, the United Kingdom, and the United States) by assigning wordings to different categories and analyzing their clinical comprehensibility. For US PI, 79% did not contain liver-related contraindications, compared to 2, 13, and 6% of German, Swiss, and British SmPCs, respectively. Study findings indicate that out of 228 examined SmPCs/PI containing liver-related contraindications, 77, 79, 76, and 52% contained unclear wording in the German, Swiss, British, and American drug market, respectively. Only 40% (German), 52% (Swiss), 39% (British), and 29% (American) of SmPCs/PI included terms with explicit wording. Including more precise statements in SmPCs/PI based on laboratory parameters (such as albumin) or scores (e.g., the Child–Pugh score) to objectify the severity of liver disease may improve the clarity of SmPCs/PI and the safety of drug prescription

    The renal transport protein OATP4C1 mediates uptake of the uremic toxin asymmetric dimethylarginine (ADMA) and efflux of cardioprotective L-homoarginine

    Get PDF
    Elevated plasma concentrations of the uremic toxin asymmetrical dimethylarginine (ADMA) and low plasma concentrations of L-homoarginine are independently associated with cardiovascular events and total mortality. Enzymes degrading ADMA [dimethylaminohydrolase 1 (DDAH1)] and synthesizing L-homoarginine [L-arginine:glycine amidinotransferase (AGAT)] are expressed in human proximal tubule cells. So far, it is not known which transport protein in the basolateral membrane of proximal tubule cells is mediating the uptake of ADMA into the cells for subsequent degradation or the export of intracellularly synthesized L-homoarginine. One study suggested that the uptake transporter OATP4C1 (gene symbol SLCO4C1) may be involved in the transport of ADMA and other uremic toxins. OATP4C1 is a member of the SLCO/SLC21 family of solute carriers, localized in the basolateral membrane of human proximal tubule cells. By using stably-transfected HEK cells overexpressing human OATP4C1, we demonstrate that ADMA and L-homoarginine are substrates of OATP4C1 with Km values of 232.1 μM and 49.9 μM, respectively. ADMA and the structurally related uremic toxin SDMA (100 μM) inhibited OATP4C1-mediated L-homoarginine uptake (P < 0.01), whereas other tested uremic toxins such as urea and p-cresyl sulfate have no effect on OATP4C1-mediated transport. Preloading experiments (300 μM for 60 min) with subsequent efflux studies revealed that OATP4C1 also facilitates efflux e.g. of L-homoarginine. Both ADMA and L-homoarginine are substrates of human OATP4C1. Because proximal tubule cells are one site of ADMA metabolism and L-homoarginine synthesis, we postulate a protective role of OATP4C1 by mediating uptake of ADMA from and export of L-homoarginine into the systemic circulation

    Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner

    Get PDF
    Funding: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 387509280, SFB 1350), the Alexander von Humboldt Foundation (3.3-GRO/1143730 STP), the Interdisziplin ̈ares Zentrum für KlinischeForschung of Friedrich-Alexander University (IZKF, TP-A33), and the Bayerische Forschungsstiftung (PDOK-74-10).Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)-dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.Publisher PDFPeer reviewe

    L-Arginine and Cardioactive Arginine Derivatives as Substrates and Inhibitors of Human and Mouse NaCT/Nact

    Get PDF
    The uptake transporter NaCT (gene symbol SLC13A5) is expressed in liver and brain and important for energy metabolism and brain development. Substrates include tricarboxylic acid cycle intermediates, e.g., citrate and succinate. To gain insights into the substrate spectrum of NaCT, we tested whether arginine and the cardioactive L-arginine metabolites asymmetric dimethylarginine (ADMA) and L-homoarginine are also transported by human and mouse NaCT/Nact. Using HEK293 cells overexpressing human or mouse NaCT/Nact we characterized these substances as substrates. Furthermore, inhibition studies were performed using the arginine derivative symmetric dimethylarginine (SDMA), the NaCT transport inhibitor BI01383298, and the prototypic substrate citrate. Arginine and the derivatives ADMA and L-homoarginine were identified as substrates of human and mouse NaCT. Transport of arginine and derivatives mediated by human and mouse NaCT were dose-dependently inhibited by SDMA. Whereas BI01383298 inhibited only human NaCT-mediated citrate uptake, it inhibits the uptake of arginine and derivatives mediated by both human NaCT and mouse Nact. In contrast, the prototypic substrate citrate inhibited the transport of arginine and derivatives mediated only by human NaCT. These results demonstrate a so far unknown link between NaCT/Nact and L-arginine and its cardiovascular important derivatives

    The CredibleMeds® list: Usage of QT interval prolonging drugs in Germany and discordances with prescribing information

    Get PDF
    Aims A substantial number of Summaries of Product Characteristics (SmPCs)/Prescribing Information (PI) have warnings or contraindications on QT interval prolongation. The goal of this work was to quantify usage of QT interval prolonging drugs according to the CredibleMeds® database of the German outpatient drug prescription market and to evaluate discrepancies between German SmPCs/US PI and CredibleMeds®. Methods Drugs listed on CredibleMeds® with known, possible or conditional risk for torsade de pointes were evaluated from 2000 to 2020. The German drug prescription report was used as source for defined daily dose‐ (DDD‐) based prescriptions of the German outpatient drug prescription market of the public health insurance system. German SmPCs and US PI of 253 CredibleMeds®‐listed drugs were evaluated for contents regarding QT interval prolongation. Results Of the drugs currently listed on CredibleMeds®, 59.7% (95% confidence interval [CI] 53.5–65.5%) were listed after 2012. Due to newly listed drugs, the proportion of DDDs of CredibleMeds® drugs among all prescriptions increased from 4.6% in 2013 to 21.1% in 2019. DDD‐based usage of the CredibleMeds® drugs already listed in 2013 was similar in 2019. Among the drugs with known QT risk according to CredibleMeds®, 7.5% (95% CI 2.6–19.9%) of German SmPCs and 21.1% (95% CI 11.1–36.3%) of US PI had no mention of QT issues whatsoever. Conclusion A significant proportion of all drugs prescribed in the outpatient sector is associated with QT risks according to CredibleMeds®. SmPCs and PI should systematically be evaluated for concordance with the widely used CredibleMeds® database to increase medication safety

    Transcriptional Regulation of Liver-Type OATP1B3 (Lt-OATP1B3) and Cancer-Type OATP1B3 (Ct-OATP1B3) Studied in Hepatocyte-Derived and Colon Cancer-Derived Cell Lines

    Get PDF
    Due to alternative splicing, the SLCO1B3 gene encodes two protein variants; the hepatic uptake transporter liver-type OATP1B3 (Lt-OATP1B3) and the cancer-type OATP1B3 (Ct-OATP1B3) expressed in several cancerous tissues. There is limited information about the cell type-specific transcriptional regulation of both variants and about transcription factors regulating this differential expression. Therefore, we cloned DNA fragments from the promoter regions of the Lt-SLCO1B3 and the Ct-SLCO1B3 gene and investigated their luciferase activity in hepatocellular and colorectal cancer cell lines. Both promoters showed differences in their luciferase activity depending on the used cell lines. We identified the first 100 bp upstream of the transcriptional start site as the core promoter region of the Ct-SLCO1B3 gene. In silico predicted binding sites for the transcription factors ZKSCAN3, SOX9 and HNF1α localized within these fragments were further analyzed. The mutagenesis of the ZKSCAN3 binding site reduced the luciferase activity of the Ct-SLCO1B3 reporter gene construct in the colorectal cancer cell lines DLD1 and T84 to 29.9% and 14.3%, respectively. In contrast, using the liver-derived Hep3B cells, 71.6% residual activity could be measured. This indicates that the transcription factors ZKSCAN3 and SOX9 are important for the cell type-specific transcriptional regulation of the Ct-SLCO1B3 gene
    corecore