7 research outputs found

    European Archives of Oto-Rhino-Laryngology / Whole-exome sequencing to identify the cause of congenital sensorineural hearing loss in carriers of a heterozygous GJB2 mutation

    No full text
    Bi-allelic variations in the gap junction protein beta-2 (GJB2) gene cause up to 50% of cases of newborn hearing loss. Heterozygous pathogenic GJB2 variations are also fivefold overrepresented in idiopathic patient groups compared to the normal-hearing population. Whether hearing loss in this group is due to unidentified additional variations within GJB2 or variations in other deafness genes is unknown in most cases. Whole-exome sequencing offers an effective approach in the search for causative variations in patients with Mendelian diseases. In this prospective genetic cohort study, we initially investigated a family of Turkish origin suffering from congenital autosomal recessive hearing loss. An index patient and his normal-hearing father, both bearing a single heterozygous pathogenic c.262G>T (p.Ala88Ser) GJB2 transversion as well as the normal-hearing mother were investigated by means of whole-exome sequencing. Subsequently the genetic screening was extended to a hearing-impaired cohort of 24 families of Turkish origin. A homozygous missense c.5492G>T transversion (p.Gly1831Val) in the Myosin 15a gene, previously linked to deafness, was identified as causative in the index family. This very rare variant is not listed in any population in the Genome Aggregation Database. Subsequent screening of index patients from additional families of Turkish origin with recessive hearing loss identified the c.5492G>T variation in an additional family. Whole-exome sequencing may effectively identify the causes of idiopathic hearing loss in patients bearing heterozygous GJB2 variations.(VLID)355285

    Wiener klinische Wochenschrift / Identification of a rare COCH mutation by whole-exome sequencing : Implications for personalized therapeutic rehabilitation in an Austrian family with non-syndromic autosomal dominant late-onset hearing loss

    No full text
    Background Non-syndromic autosomal dominant hearing impairment is characteristically postlingual in onset. Genetic diagnostics are essential for genetic counselling, disease prognosis and understanding of the molecular mechanisms of disease. To date, 36 causative genes have been identified, many in only individual families. Gene selection for genetic screening by traditional methods and genetic diagnosis in autosomal dominant patients has therefore been fraught with difficulty. Whole-exome sequencing provides a powerful tool to analyze all protein-coding genomic regions in parallel, thus allowing the comprehensive screening of all known genes and associated alterations. Methods In this study, a previously undiagnosed late-onset progressive autosomal dominant hearing loss in an Austrian family was investigated by means of whole-exome sequencing. Results were confirmed by Sanger sequencing. Results A previously described c.151C>T missense (p.Pro51Ser) mutation in the LCCL (limulus factor C, cochlin, late gestation lung protein Lgl1) domain of the cochlin gene (COCH) was identified as causative and segregated with disease in five members of the family. Molecular diagnostics led to the decision to perform cochlear implantation in an index patient who subsequently showed excellent postoperative auditory performance. The c.151C>T mutation was not found in 18 screened Austrian families with autosomal dominant hearing loss but was represented alongside other known pathogenic mutant COCH alleles in the Genome Aggregation Database (gnomAD) in European populations. A combined allele frequency of 0.000128 implies an orphan disease frequency for COCH-induced hearing loss of 1:3900 in Europe. Conclusions Exome sequencing successfully resolved the genetic diagnosis in a family suffering from autosomal dominant hearing impairment and allowed prediction of purported auditory outcome after cochlear implantation in an index patient. Personalized treatment approaches based on the molecular mechanisms of disease may become increasingly important in the future.(VLID)358224

    Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells

    No full text
    Solution processed inverted organic photovoltaics (OPVs) usually use (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) PEDOT:PSS derivatives as hole selective contact. In this study the effect of different PEDOT:PSS formulations, Al4083, PH and PH500 in inverted structured OPVs is investigated. Through detailed device physics analysis PEDOT:PSS PH is proposed as most suitable hole selective contact for inverted OPVs device function. Furthermore, PEDOT:PSS PH hole selective contact is treated with 3 different wetting agents, Zonyl FS-300 fluorosurfactant (Zonyl), 2,5,8,11-tetramethyl-6-dodecyn-5,8-diol ethoxylate (Dynol) and Zonyl:Dynol mixture and the corresponding non-encapsulated inverted OPVs investigated under accelerated humidity lifetime conditions. The inverted OPVs incorporating PEDOT:PSS:Zonyl hole selective contact shown limitations on humidity lifetime performance due to the poorest adhesion properties of Zonyl-treated PEDOT:PSS PH compared with Dynol and Zonyl/Dynol mixture treaded PEDOT:PSS PH

    Biallelic NFATC1 mutations cause an inborn error of immunity with impaired CD8+ T-cell function and perturbed glycolysis

    No full text
    International audienceThe nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses
    corecore