38 research outputs found

    It Costs to Be Clean and Fit: Energetics of Comfort Behavior in Breeding-Fasting Penguins

    Get PDF
    ), seabirds known to fast for up to one month during incubation shifts ashore.A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage.This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for the fitness of colonial seabirds

    Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast

    Get PDF
    Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation

    Histone H3K56 Acetylation, CAF1, and Rtt106 Coordinate Nucleosome Assembly and Stability of Advancing Replication Forks

    Get PDF
    Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage

    Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes

    Get PDF
    Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81–Mms4/EME1, Slx1–Slx4/BTBD12/MUS312, XPF–ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination

    The Rhafas Cave (Morocco): Chronology of the mousterian and aterian archaeological occupations and their implications for Quaternary geochronology based on luminescence (TL/OSL) age determinations

    No full text
    The Middle Palaeolithic chronology of the Maghreb region of North Africa is poorly known because of the paucity of sites with a long stratigraphy and the limited number of available radiometric dates. In this paper, we report the age-estimates obtained by the TL and OSL methods on sediments and burnt lithic samples from the Rhafas Cave in Eastern Morocco. Our results indicate that the Mousterian is largely earlier than 100 ka, that the latest Mousterian dates to OIS 5 between 90–80 ka and the Mousterian to Aterian transition occurred about 70–80 ka, at the end of OIS 5 or during OIS 4. These dates will be most useful in the construction of a chronological framework of this unique sequence and for the interpretation of paleoenvironmental information

    Hayonim Cave: a TL-based chronology of a Levantine Mousterian sequence

    No full text
    International audienceThe thermoluminescence dating method was applied to 77 heated flints from the Mousterian layers of Hayonim Cave in order to provide a precise TL-based chronology for this important Levantine sequence. A detailed dosimetric study was performed by using 76 dosimeter capsules and revealed strong spatial dose-rate variations. In parallel, Fourier transform infrared spectrometry enabled the identification of various mineral assemblages in the sediments of the cave and to localize the boundaries of these assemblages. By comparing these two data sets, it is shown that low dose-rate values (not, vert, similar500 μGy/a) are systematically recorded in areas where the calcite-dahllite (CD) assemblage is preserved, whereas higher values (up to 1300 μGy/a) are associated with the leucophosphite, montgomeryite, variscite and siliceous aggregates (LMVS) assemblage. The dosimetric and mineralogical information was combined in order to assess, where possible, the dose-rate experienced by each flint during its burial. Some of the flint samples analyzed were too close to mineral assemblage boundaries and were therefore discarded. This rigorous selection led to TL ages ranging from 230 to 140 ka for the lower part of the Mousterian sequence (layers F and Lower E), which contains lithic industries characterized by blade production using the laminar method
    corecore