64 research outputs found
compomics-utilities: an open-source Java library for computational proteomics
<p>Abstract</p> <p>Background</p> <p>The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with) spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool.</p> <p>Results</p> <p>In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development.</p> <p>Conclusions</p> <p>As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.</p
Exploring the potential of public proteomics data
In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS-based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re-)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data
Arachnoid cysts do not contain cerebrospinal fluid: A comparative chemical analysis of arachnoid cyst fluid and cerebrospinal fluid in adults
<p>Abstract</p> <p>Background</p> <p>Arachnoid cyst (AC) fluid has not previously been compared with cerebrospinal fluid (CSF) from the same patient. ACs are commonly referred to as containing "CSF-like fluid". The objective of this study was to characterize AC fluid by clinical chemistry and to compare AC fluid to CSF drawn from the same patient. Such comparative analysis can shed further light on the mechanisms for filling and sustaining of ACs.</p> <p>Methods</p> <p>Cyst fluid from 15 adult patients with unilateral temporal AC (9 female, 6 male, age 22-77y) was compared with CSF from the same patients by clinical chemical analysis.</p> <p>Results</p> <p>AC fluid and CSF had the same osmolarity. There were no significant differences in the concentrations of sodium, potassium, chloride, calcium, magnesium or glucose. We found significant elevated concentration of phosphate in AC fluid (0.39 versus 0.35 mmol/L in CSF; <it>p </it>= 0.02), and significantly reduced concentrations of total protein (0.30 versus 0.41 g/L; <it>p </it>= 0.004), of ferritin (7.8 versus 25.5 ug/L; <it>p </it>= 0.001) and of lactate dehydrogenase (17.9 versus 35.6 U/L; <it>p </it>= 0.002) in AC fluid relative to CSF.</p> <p>Conclusions</p> <p>AC fluid is not identical to CSF. The differential composition of AC fluid relative to CSF supports secretion or active transport as the mechanism underlying cyst filling. Oncotic pressure gradients or slit-valves as mechanisms for generating fluid in temporal ACs are not supported by these results.</p
Konsensusprotokoll zur Standardisierung von Entnahme und Biobanking des Liquor cerebrospinalis
Die Erforschung von Biomarkern in Körperflüssigkeiten bei neurodegenerativen und neuroinflammatorischen Erkrankungen blickt auf eine langjährige Geschichte zurück. Dennoch werden nur wenige Liquor cerebrospinalis (Liquor)-Biomarker in der klinischen Praxis verwendet. Einer der problematischen Faktoren in der Liquorbiomarker-Forschung ist die eingeschränkte Aussagekraft von Studien aufgrund einer nicht ausreichend großer Anzahl von Proben, die in Studien von einzelnen Zentren akquiriert werden können. Deshalb ist die Kooperation zwischen mehreren Zentren erforderlich, um große Biobanken von definierten Proben zu etablieren. Standardisierte Protokolle für Biobanking sind unumgänglich, um die durch die größere Anzahl von Liquorproben gewonnene statistische Aussagekraft sicherzustellen und nicht durch mangelhafte Präanalytik einzuschränken. Hier wird ein Konsensusbericht über Leitlinien zu Liquorentnahme und Biobanking durch das BioMS-eu Netzwerk für Liquorbiomarker-Forschung in Multipler Sklerose präsentiert. Schwerpunkte des Berichts sind Liquorentnahme, präanalytische Faktoren und klinische sowie sonstige Informationen. Biobanking-Protokolle sind für Liquor-Biobanken im Rahmen der Erforschung jeder neurologischen Krankheit anwendba
Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies
There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF) are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO), but we could expect novel CSF biomarkers that help define prognosis and response to treatment for this disease. One of the most critical factors in biomarker research is the inadequate powering of studies performed by single centers. Collaboration between investigators is needed to establish large biobanks of well-defined samples. A key issue in collaboration is to establish standardized protocols for biobanking to ensure that the statistical power gained by increasing the numbers of CSF samples is not compromised by pre-analytical factors. Here, consensus guidelines for CSF collection and biobanking are presented, based on the guidelines that have been published by the BioMS-eu network for CSF biomarker research. We focussed on CSF collection procedures, pre-analytical factors and high quality clinical and paraclinical information. Importantly, the biobanking protocols are applicable for CSF biobanks for research targeting any neurological disease
TGF-β promotes microtube formation in glioblastoma through Thrombospondin 1
International audienceAbstract Background Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation. Methods Bioinformatics analysis of TCGA was performed to analyze differences between GBM and oligodendroglioma. Patient-derived GBM stem cell lines were used to investigate MT formation under transforming growth factor-beta (TGF-β) stimulation and inhibition in vitro and in vivo in an orthotopic xenograft model. RNA sequencing and proteomics were performed to detect commonalities and differences between GBM cell lines stimulated with TGF-β. Results Analysis of TCGA data showed that the TGF-β pathway is highly activated in GBMs compared to oligodendroglial tumors. We demonstrated that TGF-β1 stimulation of GBM cell lines promotes enhanced MT formation and communication via calcium signaling. Inhibition of the TGF-β pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-β, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-β stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. Conclusion TGF-β and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT-driven invasion/resistance network
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
- …