1,143 research outputs found

    Detection of vancomycin resistances in enterococci within 3 1/2 Hours

    Get PDF
    Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE

    Representations of J-central J-Potapov functions in both nondegenerate and degenerate cases

    Get PDF
    AbstractLet J be an m×m signature matrix (i.e. J∗=J and J2=Im) and let D:={z∈C:|z|<1}. Denote PJ(D) the class of all J-Potapov functions in D, i.e. the set of all meromorphic m×m matrix-valued functions f in D with J-contractive values at all points of D at which f is holomorphic. Further, denote PJ,0(D) the subclass of all f∈PJ(D) which are holomorphic at the origin. Let f∈PJ,0(D), and let f(w)=∑j=0∞Ajwj be the Taylor series representation of f in some neighborhood of 0. Then it was proved in [B. Fritzsche, B. Kirstein, U. Raabe, On the structure of J-Potapov sequences, Linear Algebra Appl., in press] that for each n∈N the matrix An can be described by its position in a matrix ball depending on the sequence (Aj)j=0n-1. The J-Potapov function f is called J-central if there exists some k∈N such that for each integer j⩾k the matrix Aj coincides with the center of the corresponding matrix ball.In this paper, we derive left and right quotient representations of matrix polynomials for J-central J-Potapov functions in D. Moreover, we obtain recurrent formulas for the matrix polynomials involved in these quotient representations

    Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions

    Get PDF
    Iron oxides represent a substantial fraction of secondary minerals and particularly affect the reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is still obscure how transient conditions in the solution will affect the properties of in situ precipitated Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in which Fe2+was discharged with the effluent from anoxic soil and subsequently oxidized in the effluent due to contact with air. Our study features three novel aspects being unconsidered so far: i) the transient composition of soil-derived solutions, ii) that pedogenic Fe oxides instead of Fe salts serve as major source for Fe2+ in soil solution and iii) the presence of exclusively soil-derived organic and inorganic compounds during precipitation. The experiments were carried out with two topsoil materials that differed in composition, texture and land use. Derived from M&ouml;ssbauer spectroscopy, broad distributions in quadrupole splittings (0 - 2 mm s-1) and magnetic hyperfine fields (35 - 53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5 - 2). The elemental composition of the Fe-OM co-precipitates was in accordance with the sequential precipitation of Fe(III)phosphates/arsenates prior to the formation of ferrihydrite. This explains decreasing Si contents in the Fe-OM co-precipitates with increasing availability of P. With respect to constant mean quadrupole splittings and slightly decreasing mean magnetic hyperfine fields, increasing contents of OC, P and Al in the Fe-OM co-precipitates did not further increase the structural disorder of the Fe polyhedra, while the crystallite interactions slightly decreased. Scanning electron microscopy and dynamic light scattering revealed the coincidental presence of variably sized aggregates and a considerable amount of Fe-OM co-precipitates, which remained dispersed in solution for months. Thus, variably composed Fe-OM co-precipitates with highly diverse aggregate sizes and comparably constant poor crystallinity can be expected after the oxidation of Fe2+ in transient, soil-derived solutions

    Angular distribution studies on the two-photon ionization of hydrogen-like ions: Relativistic description

    Full text link
    The angular distribution of the emitted electrons, following the two-photon ionization of the hydrogen-like ions, is studied within the framework of second order perturbation theory and the Dirac equation. Using a density matrix approach, we have investigated the effects which arise from the polarization of the incoming light as well as from the higher multipoles in the expansion of the electron--photon interaction. For medium- and high-Z ions, in particular, the non-dipole contributions give rise to a significant change in the angular distribution of the emitted electrons, if compared with the electric-dipole approximation. This includes a strong forward emission while, in dipole approxmation, the electron emission always occurs symmetric with respect to the plane which is perpendicular to the photon beam. Detailed computations for the dependence of the photoelectron angular distributions on the polarization of the incident light are carried out for the ionization of H, Xe53+^{53+}, and U91+^{91+} (hydrogen-like) ions.Comment: 16 pages, 4 figures, published in J Phys

    WIRE SCANNERS FOR EMITTANCE MEASUREMENTS AT THE 100 keV SPIN POLARIZED ELECTRON BEAM LINE AT THE S-DALINAC

    Get PDF
    Abstract A source of 100 keV spin polarized electrons has been installed at the 130 MeV superconducting Darmstadt linear accelerator S-DALINAC. Circularly polarized laser light excites a GaAs cathode, producing spin polarized electrons in bunches with pulse lengths in the region of 50 ps and smaller at a repetition frequency of 3 GHz. A Wienfilter for spin manipulation and a Mott polarimeter for polarization measurements are installed in the low-energy beam line. Polarizations up to 86% have been shown with strained superlattice GaAs cathodes. Installed wire scanners in the beam line measure beam radius and position and in conjunction with a solenoid with variable focal length a parameter set of beam sizes depending on the focal length can be obtained, allowing for an emittance calculation. The scanning unit, two perpendicular 50 ➭ m tungsten wires for x and y measurements mounted on an insulated frame, is installed at an angle of 45 in a plane perpendicular to the beam. Pneumatic as well as electric translation is used while the data read-out is done by a 24-bit ADC with variable reading speed. Measurements at the S-DALINAC give an indication of the beam quality of the spin polarized electron source, permit a comparison with the already installed thermionic electron source, and allow the measurement of a possible emittance growth from the Wien-filter that is to be excluded. Furthermore, the knowledge of the beam size renders a slit measurement of the beam pulse length possible. S-DALINAC The S-DALINAC [1] is a recirculating superconducting electron linear accelerator capable of producing electron beams at beam energies from 2.5 MeV up to typically 80-90 Mev, with a design value of up to 130 MeV. Around the S-DALINAC, a multifacetted nuclear-physics program is realized in Darmstadt. Research topics are nuclear structure, nuclear astrophysics, fundamental studies and the continuous upgrade of the accelerator, all being the focus of a center of excellence funded by the German Research Foundation (DFG) about eight years ago. Since the S-DALINAC&apos;s first commissioning around 1990, nuclear resonance fluorescence experiment

    Multiplicity of solutions to GW-type approximations

    Full text link
    We show that the equations underlying the GWGW approximation have a large number of solutions. This raises the question: which is the physical solution? We provide two theorems which explain why the methods currently in use do, in fact, find the correct solution. These theorems are general enough to cover a large class of similar algorithms. An efficient algorithm for including self-consistent vertex corrections well beyond GWGW is also described and further used in numerical validation of the two theorems

    Electron loss of fast heavy projectiles in collision with neutral targets

    Full text link
    The multiple electron loss of heavy projectiles in fast ion-atom collisions has been studied in the framework of the sudden perturbation approximation. Especially, a model is developed to calculate the cross sections for the loss of any number of electrons from the projectile ion, including the ionization of a single electron and up to the complete stripping of the projectile. For a given collision system, that is specified by the (type and charge state of the) projectile and target as well as the collision energy, in fact, the experimental cross sections for just three final states of the projectile are required by this model in order to predict the loss of any number, NN, of electrons for the same collision system, or for any similar system that differs only in the energy or the initial charge state of the projectile ion. The model is simple and can be utilized for both, the projectile and target ionization, and without that large computer resources are requested. Detailed computation have been carried out for the multiple electron loss of Xe18+^{18+} and U6+,10+,28+^{6+,\, 10+,\, 28+} projectiles in collision with neutral Ar and Ne gas targets

    Polarization transfer in Rayleigh scattering of hard x-rays

    Get PDF
    Wereport on the first elastic hard x-ray scattering experiment where the linear polarizationcharacteristics of both the incident and the scattered radiation were observed. Rayleigh scattering wasinvestigated in a relativistic regime by using a high-Z target material, namely gold, and a photon energyof 175keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at ascattering angle of q = 90we observed a strong depolarization for the scattered photonswith adegree of linear polarization of +0.27% 0.12%only. This finding agreeswith second-orderquantum electrodynamics calculations of Rayleigh scattering, when taking into account a smallpolarization impurity of the incident photon beam which was determined to be close to 98%. Thelatter value was obtained independently from the elastic scattering by analyzing photons that wereCompton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-arttheory, Rayleigh scattering could provide a very accurate method to diagnose polarization impuritiesin a broad region of hard x-ray energies

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.This work was supported by H2020 EU project “Reground” Grant Agreement N◦ 641768. (www.reground-project.eu/). The authors gratefully acknowledge the valuable contribution of Sofia Credaro, who assisted in the proofreading and language editing of the manuscript. The authors thank the constructive comments by two anonymous reviewers
    corecore