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Abstract 

Iron oxides represent a substantial fraction of secondary minerals and particularly affect the 

reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is 

still obscure how transient conditions in the solution will affect the properties of in situ precipitated 

Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to 

predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in 

soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates 

from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in 

which Fe2+ was discharged with the effluent from anoxic soil and subsequently oxidized in the 

effluent due to contact with air. Our study features three novel aspects being unconsidered so far: 

i) the transient composition of soil-derived solutions, ii) that pedogenic Fe oxides instead of Fe 

salts serve as major source for Fe2+ in soil solution and iii) the presence of exclusively soil-derived 

organic and inorganic compounds during precipitation. The experiments were carried out with two 

topsoil materials that differed in composition, texture and land use. Derived from Mössbauer 

spectroscopy, broad distributions in quadrupole splittings (0 - 2 mm s-1) and magnetic hyperfine 

fields (35 - 53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe 

phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. 

lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, 

silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently 

discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their 

respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main 

components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5 - 2). The elemental composition of the 

Fe-OM co-precipitates was in accordance with the sequential precipitation of 

Fe(III)phosphates/arsenates prior to the formation of ferrihydrite. This explains decreasing Si 

contents in the Fe-OM co-precipitates with increasing availability of P. With respect to constant 

mean quadrupole splittings and slightly decreasing mean magnetic hyperfine fields, increasing 

contents of OC, P and Al in the Fe-OM co-precipitates did not further increase the structural 

disorder of the Fe polyhedra, while the crystallite interactions slightly decreased. Scanning electron 

microscopy and dynamic light scattering revealed the coincidental presence of variably sized 

aggregates and a considerable amount of Fe-OM co-precipitates, which remained dispersed in 

solution for months. Thus, variably composed Fe-OM co-precipitates with highly diverse aggregate 

sizes and comparably constant poor crystallinity can be expected after the oxidation of Fe2+ in 

transient, soil-derived solutions.  
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1. INTRODUCTION 

Owing to their high reactivity (Gilbert and Banfield, 2005), Fe oxides represent key reactive 

components in natural systems (Waychunas et al., 2005). They considerably determine the 

partitioning and thus the availability and mobility of nutrients (e.g. PO4
3-, Baken et al. (2014)) and 

contaminants (e.g. As, Fritzsche et al. (2011)) in aquatic environments and in porous media. They 

are considered to exhibit a crucial role in the uptake of metals/contaminants and in the catalysis of 

redox processes (Frierdich et al., 2011). Fe(III) from Fe oxides also serves as substantial electron 

acceptor in microbial respiration under anoxic conditions (Lovley and Phillips, 1988). Thus, Fe 

oxides considerably affect the biogeochemical cycling of Fe (Weber et al., 2006) and of elements, 

which are associated with Fe oxides or are integral parts of the Fe-cycle (Li et al., 2012). 

To the present day, this pronounced relevance of Fe oxides for elemental cycling in nature 

encouraged scientists to conduct studies on the composition and structure of Fe oxides, which 

precipitate in the presence of either inorganic or organic compounds. Such studies include silicate 

(Cismasu et al., 2014), calcium, phosphate and arsenate/arsenite in the absence and  in presence 

of silicate (van Genuchten et al., 2014; Voegelin et al., 2010; respectively), polysaccharides 

(Mikutta et al., 2008), proteins (Kashyap et al., 2014) and dissolved organic matter (OM) from 

forest floor layers (Eusterhues et al., 2008; Mikutta et al., 2014b). While these studies provide 

important insights into the impact of single compounds on the Fe oxide properties, it remains 

unclear to what extent these findings apply to Fe oxides that precipitate in natural systems. In 

nature, secondary Fe oxides precipitate from solutions that contain a multitude of inorganic and 

organic compounds that coexist with each other. This occurs, for example, after oxidation of Fe2+ at 

anoxic-oxic interfaces (Murray et al., 1995), e.g. in the hyporheic zone of aquatic environments 

(Banfield and Zhang, 2001), in redoximorphic soils (Thompson et al., 2011) and after exfiltration of 

Fe2+-containing solutions (Fritzsche et al., 2006). The coexistence of organic and inorganic 

compounds during Fe oxide precipitation was therefore included in dedicated experimental setups, 

e.g. in redox-stat reactors (Schuth et al., 2015; Thompson et al., 2006), or by the use of natural 

solutions (Gunnars et al., 2002). However, such approaches do not acknowledge substantial soil 

features, i.e. relevant liquid/solid ratios and the prevalence of non-equilibrium conditions. Non-

equilibrium states between the liquid, solid and gaseous phase result in a transient, i.e. 

permanently changing, composition of (soil) solutions with dependence on the contact time 

between these phases. A transient state may result in considerably altered properties of the 

obtained Fe oxides. For example, the degree of Fe oxide crystallinity increased in soil during redox 

cycles in closed redox-stat reactors (Thompson et al., 2006) while it decreased in soils under in 

situ conditions (Thompson et al., 2011). In open systems like in the latter study, transient 
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conditions are maintained due to the variable supply of OM (topsoils) and of Si and Ti (subsoils), 

which inhibit the aging of Fe oxides (Thompson et al., 2011).  Thus, experimental designs are 

required that produce sufficient amounts of co-precipitated Fe oxide phases, which are 

representative for nature (Thompson et al., 2011) and allow for a comprehensive characterization 

with complementary analytical approaches. With the present study, we intend to improve our 

understanding concerning the elemental composition and structure of Fe(III)minerals that 

precipitate from transient, soil-derived solutions after oxidation of dissolved Fe2+. Understanding 

the initial state of such Fe precipitates is mandatory to assess the fate of Fe in soils and its export 

into adjacent systems. We introduce an experimental setup that allows for the production of 

Fe(III)minerals with properties that are expected from precipitates at anoxic-oxic interfaces in soils. 

This experimental setup reproduces the transient milieu conditions characteristic of exfiltrates from 

soil. All reactive organic and inorganic species in the liquid phase originate solely from the soil 

solid phase while these phases can interact at liquid/solid ratios characteristic of waterlogged soils. 

Consequently, our approach acknowledges that soil-borne Fe oxides or Fe-containing silicates 

serve as source for aqueous Fe2+, which is then subjected to oxidation and hydrolysis. Compared 

to common Fe oxide synthesis, where acid solutions of Fe salts are alkalized (Schwertmann and 

Cornell, 2000), natural solutions with ionic Fe are therefore fundamentally different in terms of 

composition and ionic strength. Specifically, our experimental approach considers the presence of 

hydrophilic macromolecular OM, which is characteristic of pH neutral, soil-derived solutions. This 

OM is the actual available fraction for interactions with the freshly precipitated Fe(III)minerals and 

is not necessarily represented by commonly applied humic and fulvic acids (Kleber and Johnson, 

2010). 

For reasons of readability, we use the term “Fe oxide” as a general synonym for all Fe(III) 

(oxy)(hydr)oxides. If specific Fe oxides, e.g. ferrihydrite, are discussed in this study, we refer to the 

mineral name. 

2. EXPERIMENTAL 

2.1. Generation of soil-derived Fe-OM co-precipitates 

Soil columns (stainless steel, 1000 cm3, length 15.5 cm) were packed with air-dried, <2 mm sieved 

materials from two different types of topsoils. For each topsoil material, two soil columns were 

used (independent replicates). The soil materials originated from a humus-rich topsoil horizon (Ah) 

of a gleyic Fluvisol from a floodplain site (Mulde river, Saxony-Anhalt, Germany) and a plough 

horizon (Ap) of an agriculturally used stagnic Luvisol (IUSS Working Group., 2006). The soils differ 
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in texture; Fe and organic carbon (OC) content (Table EA-1); and land use. In the following, we 

use Ah and Ap as acronyms for the columns filled with the respective soil material. 

The columns were fed with 10-3 M NaCl (Merck, Germany) from bottom to top to achieve water-

saturated conditions. Percolation was conducted with a peristaltic pump (Reglo Analog, Ismatec, 

Switzerland) at a porewater velocity of 0.25 cm h-1 (Ah) and 0.29 cm h-1 (Ap) with the same influent 

and the same flow direction. This percolation rate equals to an exchange of 0.39 (Ah) and 0.45 

(Ap) pore volumes (PVs) per day. Anoxic conditions rapidly developed and prevailed in all soil 

columns due to the activity of autochthonous microbial communities. As a consequence, Fe2+ was 

released owing to the microbial Fe(III) reduction of pedogenic Fe oxides. The emergence of 

effluent Fe2+ was accompanied by characteristic drops in effluent redox potentials and the 

emergence of CO2 and inorganic carbon (IC) in the effluents of effectively IC-free soil materials 

(Figure EA-2). The presence of an end product (CO2) and byproduct (Fe2+) of microbial respiration 

after depletion of O2 (redox potential) are strong indicators for the microbial Fe(III) reduction in soil 

committed by autochthonous communities. During percolation for >2 PVs, the soil effluent was 

collected in 4 (Ah) and 3 (Ap) fractions. We numbered these fractions in ascending order with 

increasing PVs. The effluent was exposed to the ambient atmosphere (pO2 ~21 kPa) as soon as 

discharged from the soil column. This resulted in the oxidation of discharged Fe2+ and the 

subsequent precipitation of Fe(III) minerals. Depending on the Fe2+ concentration, the oxidation 

was complete after few hours (Figure EA-3) with an expected maximum of ~15 h in Ah_1, which 

contained 1.5 mM Fe2+. Considering the predominant anoxic conditions within the soil column and 

the availability of O2 outside, the column outlet equals to a static anoxic-oxic interface in this 

experimental design. The influent contained 10-3 M NaCl to control its ionic strength. Redox-active 

and pH-modifying compounds were added neither to the soil materials nor to the effluent. Except 

for Na+ and Cl-, all (in)organic species in the effluent therefore exclusively originated from the soil. 

Several flow interrupts were conducted to amplify the contribution of rate-limited processes at the 

expense of equilibrium processes (Wehrer and Totsche, 2003). For example, such flow interrupts 

favor the accumulation of Fe2+ in soil solution since the microbial Fe(III) reduction is in non-

equilibrium with respect to the mean residence time of the solution in the soil (Ah: ~3 d, Ap: ~2 d). 

More details on this experimental approach and a schedule of the sampled effluent fractions are 

given in Figure EA-4. All soil column experiments were conducted at 295 ± 2 K. 

2.2. Effluent filtration, dialysis and drying 

Filtration was conducted with polyethersulfone filters (0.45 µm Acrodisc, Pall Scientific, USA). 

Effluent dialysis (1000 kDa; Spectra/Por Float-A-Lyzer G2, Spectrum Laboratories, USA) against 
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ultrapure water (Elix + MilliQ, Millipore, USA) was necessary to avoid precipitation of salts during 

effluent drying. This is mandatory for scanning electron microscopy (SEM), Fourier-transform 

infrared (FTIR) spectroscopy and X-ray diffractometry (XRD). Except for SEM and elemental 

analysis, the dialyzed effluent was freeze-dried (Alpha 1-4 LSC, Christ, Germany). 

2.3. Mössbauer spectroscopy, SEM, FTIR spectroscopy, positive matrix factorization and 

elemental composition of the effluent precipitates 

57Fe Mössbauer spectroscopy was conducted at the Centre of Applied Geosciences Tübingen 

(Eberhard-Karls-University, Germany). The freeze-dried precipitates from each unfiltered dialyzed 

effluent fraction were studied at 77 K and 5 K using a closed cycle cryostat (Janis, USA). 

Mössbauer spectra were recorded in transmission geometry (Wissel, Germany) using a triangular 

velocity waveform and a source of 57Co in Rh matrix. The spectra were calibrated against a 

measurement of α-Fe(0) foil at room temperature and were evaluated with the Recoil software 

package (University of Ottawa, Canada) using Voigt-based fitting methods. We chose a single site 

model with two Gaussian components to reflect the spectral asymmetries in the Mössbauer 

spectra. See EA-13 for further details of the fitting approach. 

For SEM, 10 µl of unfiltered dialyzed effluent were air-dried on a Si wafer equipped with a 4x4 Cu 

grid (edge length: 500 µm). Analysis was conducted with an ULTRA PLUS field emission scanning 

electron microscope (Zeiss, Germany). Aggregate areas were calculated with the software ImageJ 

(V. 1.47) from secondary electron (SE) images, which were recorded on 3 random grid sectors. 

Due to limitations in SE image resolution, particle areas <80 nm2 were excluded from 

quantification. For spheres, this equals to a diameter of ~10 nm. 

FTIR spectra were recorded using a Nicolet iS10 spectrometer (Thermo Fisher Scientific, 

Germany). In transmission mode, the freeze-dried precipitates of each unfiltered dialyzed effluent 

fraction were mortared and mixed with KBr (FTIR spectroscopy grade, Merck, Germany) at a 

volume ratio of ~1:200 and pressed to pellets. The pellets were measured between 4000 and 400 

cm−1 with 16 scans per spectrum at a resolution of 4 cm-1. The spectra were baseline corrected and 

normalized to maximum intensity. 

Filters, which were used for the filtration of dialyzed effluent fractions, were dried in the dark at 

room temperature and investigated in attenuated total reflection (ATR)-mode between 4000 and 

650 cm-1 with 16 scans per spectrum at a resolution of 4 cm-1. The filter cake was considered to 

exclusively consist of the Fe-OM co-precipitates. Free OM>0.45µm is excluded since OC>0.45µm was 

absent in those samples, in which the entire effluent Fe passed the 0.45 µm-filters (Figure EA-5). 

No post-processing was applied to the ATR-FTIR spectra in order to maintain all features for factor 
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analysis, which was carried out with positive matrix factorization (PMF) using an alternating 

nonnegative least-squares approach (Kim and Park, 2008). Two components were required to 

explain 99.3% (Ah-derived samples) and 99.6% (Ap-derived samples) of the variance in the 

measured spectra. The uncertainty of the component shapes was quantified with the 95% 

confidence interval at each wavenumber. Uniqueness of the PMF solution was emphasized by 

identical results despite random initialization (Figure EA-6). If not stated otherwise, the bands in 

FTIR spectra were interpreted according to Socrates (2001). 

The elemental composition (Fe, Al, As, Ca, P, S, Si) of the precipitates was determined with 

inductively coupled plasma optical emission spectroscopy (ICP-OES; Varian 725, Varian, 

Germany) in acidified samples. Non-purgeable organic carbon (NPOC) was measured by sample 

combustion after acidification and purging with C-free synthetic air (Multi N/C 2100, Analytik Jena, 

Germany). Although we chose the largest molecular weight cutoff available for dialysis tubes, the 

removal of OM, which was not associated with the effluent precipitates, was incomplete in 

unfiltered effluent. Thus, the elemental composition of the Fe precipitates was assessed on basis 

of the composition of the filter cake (Figure EA-5). The concentration of elements in the filter cakes 

(>0.45 µm) was calculated as difference between the filtered (<0.45 µm) and unfiltered fraction of 

the dialyzed effluent.  

2.4. pH, effluent composition, hydrodynamic diameter (dH), Zeta potential (UE) 

These parameters were assessed in non-dialyzed effluent fractions. Effluent pH was analyzed 

potentiometrically in unfiltered samples (Sentix 41; WTW, Germany). Effluent concentrations of Fe, 

Al, As, Ca, P, S, Si and NPOC were measured with ICP-OES and sample combustion, respectively 

(refer to 2.3.). Colloid dH was analyzed in unfiltered effluent fractions by dynamic light scattering 

(DLS) in backscattering mode (Nano ZS, Malvern Instruments, UK). The interpretation of dH is 

based on the intensity of light scattering and was derived from fitting a multiple exponential 

(CONTIN) to the autocorrelation function. Colloid UE was calculated with the Smoluchowski 

approximation from the electrophoretic mobility of the particles in unfiltered effluent (Nano ZS). 

2.5. Fe-OM co-precipitate-free control treatment 

A control treatment free of Fe-OM co-precipitates was included to assess the interferences of 

potentially coexistent particulate constituents in the soil effluent (i.e. biocolloids, silicates). This 

control was obtained from the same soil columns and conditions as described above, except for 

the instant acidification of the effluent upon discharge. The effluent was subsequently dialyzed 

(100-500 Da, Spectra/Por Biotech CE, Spectrum Laboratories). This treatment removed the 
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majority of Fe2+ from the effluent before its oxidation could occur. Due to dialysis against ultrapure 

water from the same source (pH ~ 5.5 in equilibrium with air), initial differences in the effluent pH of 

non-acidified and acidified effluent fractions were effectively equalized. The effluent acidification 

does therefore not contradict the comparison of respective X-ray diffractograms and FTIR spectra. 

Due to this treatment, the effluent was effectively free of Fe-OM co-precipitates and contained 

macromolecular OM only (EA-7). 

3. RESULTS 

3.1. Effluent composition 

The composition of the soil effluent changed continuously with increasing pore volumes (PVs), 

pointing to the transient conditions. Besides Ca, Mg, Na, K, Mn and Ba, the effluents from both 

soils contained OC, Fe, Si, P, and S (Figure EA-8 (Ah) and Figure EA-9 (Ap)). The Ah-derived 

effluent contained Al and As, which were below the detection limits in the Ap-derived effluent (Al < 

0.01 mg L-1; As < 0.04 mg L-1). Arsenic accumulated in the soil of the floodplain site due to periodic 

flooding with As-containing water from the Mulde river (Brandt, 2003). Except for Al and P, total 

concentrations of all elements decreased in the effluent with increasing PVs (Figure EA-8 and EA-

9). This is also reflected by decreasing electric conductivities (Table 1). Besides absolute 

concentrations, the concentrations of effluent compounds relative to effluent Fe also shifted 

continuously (X-axis in Figure 1). This was not observed for As, which points to the coupled 

mobilization of Fe and As from Ah, e.g. due to the reductive dissolution of As-bearing pedogenic 

Fe oxides. The concentration of all elements relative to Fe increased with increasing PVs except 

for As and Ca (Figure 1). 

3.2. Structural characterization of the Fe-OM co-precipitates 

After oxidation of Fe2+, which was the initial redox state of discharged Fe (Figure EA-2), Fe-rich 

particulate matter precipitated from the effluent of both topsoils at circum-neutral pH (Table 1). This 

resulted in an orange-reddish color of the effluent (Figure EA-10). After dialysis, OC, Fe, As (Ah-

derived effluent only), P, Si, S and Ca remained in the effluent (Ah: Figure EA-11; Ap: Figure EA-

12), suggesting that the precipitates consist of these elements. On a molar basis, OC and Fe were 

the main constituents of these precipitates, which are henceforth referred to as Fe-OM co-

precipitates. 

Mössbauer spectra showed (super)paramagnetic Fe-OM co-precipitates at 77 K (doublets) and 

magnetically ordered Fe-OM co-precipitates at 5 K (sextets, Figure EA-13). Two Gaussian 

components were required to account for the asymmetry in the doublets and sextets, with the 
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exception of the 5 K-spectrum of Ap_1 (one component sufficient; Table 2). This may represent a 

real structural difference or it may be merely an artefact of a poor signal-to-noise ratio in the 

spectrum of this sample (Figure EA-13). The replicate did not show the same behavior and 

therefore suggests that the latter is more likely. In the 77 K-Mössbauer spectra, the two 

components were weighted roughly in equal measure. No consistent changes were observed in 

their electric quadrupole splitting (∆EQ_C1 ~0.7 mm s-1; ∆EQ_C2 ~1.1 mm s-1) and their weighting 

factor with respect to the precipitates sampled at increasing PVs (Table 2). Consequently, the 

positions and widths of ∆EQ-distributions, ranging from ∆EQ = 0 - 2 mm s-1 (Figure 2A,C), were 

similar for all Fe-OM co-precipitates, although they precipitated from differently composed Ah-

derived solutions (refer to 3.1.). In comparison to the Fe-OM co-precipitates from Ah-derived 

solutions, a considerable shift to lower ∆EQ values was observed for Fe-OM co-precipitates from an 

Ap-derived solution (Figure 2A). Again, this may therefore be an artefact of the poor signal-to-noise 

ratio in the spectra obtained from this sample. This is supported by our observation that this 

considerable ∆EQ-shift was not reproduced by the replicate (Figure 2C). Nevertheless, the Fe-OM 

co-precipitates from Ap-derived solutions reproducibly exhibited lower average ∆EQ (0.82 mm s-1) 

than the Fe-OM co-precipitates from the Ah-derived solutions (~0.88 mm s-1; Table 2). In the fits of 

the 5 K-Mössbauer spectra, the component assigned to the higher magnetic hyperfine fields (Bhf) 

was more pronounced than the component assigned to the lower Bhf, which resulted in negatively 

skewed distributions of Bhf (Table 2, Figure 2B,D). These distributions covered a range of ~35 T to 

~53 T. In contrast to ∆EQ, the Bhf distributions of the Fe-OM co-precipitates from Ah-derived 

solutions shifted systematically to lower values with increasing PVs. This is reflected by the 

reproducible decrease in average Bhf from ~46 T (Ah_1) to ~45 T (Ah_4; Table 2). However, the 

Bhf-decrease by ~1 T was clearly below the average standard deviations of the Bhf-distributions (>3 

T), which narrows the relevance of this decrease considering the broadly distributed magnetic 

properties of the Fe-OM co-precipitates. In agreement with the clearly different ∆EQ-distribution of 

an Ap-derived Fe-OM co-precipitate (Figure 1A), the Bhf-distribution of this particular sample was 

also clearly different from the remaining samples. The distribution was Gaussian shaped and 

covered considerably higher Bhf up to 58 T (Figure 2B). In agreement with the ∆EQ-distribution, this 

observation was not reproduced by the replicate (Figure 2D), and we point out the poor signal-to-

noise ratio again (Figure EA-13). Nevertheless, the average Bhf of both Ap-derived Fe-OM co-

precipitates were higher than those of the Ah-derived Fe-OM co-precipitates (46.3 T vs. 45 - 46 T, 

respectively; Table 2). 

Transmission-FTIR spectra of freeze-dried material from all dialyzed effluents revealed the 

presence of ferrihydrite by respective bands at 460 cm-1 and 650 cm-1 (Figure 3, Cornell and 

Schwertmann (2003)). The latter band was not present in the OM-containing effluent, in which the 
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Fe-OM co-precipitates were absent (EA-7). This emphasizes the contribution of ferrihydrite to the 

IR absorption of material that contained the effluent Fe-OM co-precipitates. Bands characteristic of 

lepidocrocite and goethite were not observed in the FTIR spectra (Figure 3). X-ray diffractometry 

indicated the predominance of 2-line ferrihydrite in the Fe-OM co-precipitates from Ah-derived 

effluent, but contributions of amorphous Fe(III)arsenates and -phosphates cannot be ruled out 

(Figure EA-14A,B) Calcite was observed in the very first effluent fraction of Ap after onset of 

percolation (Ap_1, Figure EA-14C). Although not shown by the diffractogram of effluent material 

from the replicate soil column, we assume the presence of calcite in Ap_1 of both soil columns due 

to the high amount of Ca>0.45. Calcite formation in Ap_1 was favored owing to comparably high 

concentrations of Ca, inorganic carbon and high pH in this particular effluent fraction (Figure EA-

14). 

Considerable amounts of the effluent Fe-OM co-precipitates remained dispersed in solution for 

months. This was particularly pronounced in the effluent after percolation of >1 PV (Ah_3+4; 

Figure EA-10). Except for Ap_1, ~10-50% of Fetotal passed the 0.45 µm-filter cutoff (Table 1). 

Dynamic light scattering (DLS) revealed the presence of effluent colloids with hydrodynamic 

diameters (dH) <0.45 µm, which points to colloidal Fe-OM co-precipitates. The mean dH varied in 

response to the transient effluent composition and decreased with increasing PVs (Table 1). This 

is confirmed by secondary electron (SE) images from these precipitates (Figure 4). There, the 

aggregate shapes indicate that they consist of several smaller particles. SE image analysis 

revealed broadly distributed aggregate sizes in each effluent fraction with decreasing average and 

maximum values with increasing PVs (Figure 4D). This agrees with the results from DLS analysis 

(Table 1). The SE images also revealed a high abundance of very small aggregates (<20 nm) in all 

effluent fractions, independent of the extent in aggregation (Figure 4D). 

3.3. Elemental composition of the Fe-OM co-precipitates 

The transient soil effluent composition (see section 3.1.) induced a variable elemental composition 

of the Fe-OM co-precipitates that formed in this solution (Figure 1). Generally, increasing 

element/Fe ratios in the effluent resulted in higher element/Fe ratios in the Fe-OM co-precipitates. 

As an exception, increased relative concentrations of effluent Si resulted in decreased relative Si 

contents in the Fe-OM co-precipitates (Figure 1D). The entire effluent P and Al was associated 

with the Fe-OM co-precipitates (Figure 1C,F). In contrast, only parts of effluent OC and S were 

associated with the Fe-OM co-precipitates (Figure 1A,E). Compared to P, Al, OC, S and As, high 

molar ratios of effluent Si/Fe (0.2 - 1.0) resulted in comparably low Si/Fe ratios in the Fe-OM co-

precipitates (<0.06; Figure 1D). This was even more pronounced for Ca, which was sparse in the 
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Fe-OM co-precipitates (Ca/Fe < 0.03; Figure 1G) although highly abundant in the effluent (Ca/Fe = 

0.5 - 4.2). Similar to As, the effluent Ca/Fe remained comparably constant with increasing PVs, 

which points to a coupled mobilization of Ca and Fe2+. Nevertheless, the Ca/Fe ratios in the Fe-OM 

co-precipitates increased with increasing PVs. Concerning the mass, in particular OC (90 - 463 mg 

(g Fe)-1), As (~90 mg (g Fe)-1) and P (7 - 148 mg (g Fe)-1) were the most prominent elements 

associated with the effluent Fe-OM co-precipitates (Table EA-16). Despite comparable OC/Fe 

ratios in the effluent of both soil materials, OC contents in the Fe-OM co-precipitates from Ap-

derived effluent were clearly lower than in the Fe-OM co-precipitates from Ah-derived effluent 

(Figure 1A). Neither As nor Al were associated in detectable amounts with the Fe-OM co-

precipitates from Ap-derived effluents since these elements were also below their detection limits 

in the corresponding effluent (Figure 1B,F). 

In the transmission-FTIR spectra of freeze-dried material from dialyzed, Ah-derived effluents, the 

band at 825 cm-1 points to ferrihydrite-adsorbed As(V) (Voegelin and Hug, 2003) (Figure 3A). In 

agreement with the nearly constant molar As/Fe ratio in the Fe-OM co-precipitates from Ah-derived 

effluent (Figure 1B), the contribution of this band was similar in all corresponding FTIR spectra. 

Consequently, this band was absent in the FTIR spectra of material from Ap-derived effluents, 

which did not contain detectable As concentrations (Figure 3B). The presence of non-polymerized 

Si, which is associated with the Fe-OM co-precipitates, is indicated by Si-O-Fe bonds, which cause 

a broad absorption between 900 cm-1 and 1000 cm-1 (Figure 3A, 930 cm-1; Carlson and 

Schwertmann (1981); Doelsch et al. (2001)). This band may be indicative for monomeric silicate, 

which bonds to Fe polymers and ferrihydrite particles at Si contents as low as observed in our 

study (~5 mol%; Cismasu et al. (2014)). The band vanished in the spectra of Ah_3+4, in which the 

Fe-OM co-precipitates contained the lowest Si content (Figure 1D). The Si-O-Fe-bond disappears 

at a molar Si/Fe ratio <0.03 - 0.04. Oligomeric Si species, which develop at molar Si/Fe ratios 

>0.01 and pH = 3 (Swedlund et al., 2009) could not be traced due to superposing bands from 

adsorbed sulfate. Although the molar Si/Fe ratio was 0.02 - 0.06 in our study, we assume the 

predominance of monomeric Si species owing to the effluent pH ~ 7.5 (Table 1), which effectively 

inhibits Si polymerization at the Fe oxide surface (Doelsch et al., 2001). For the Fe-OM co-

precipitates from Ap-derived effluent, the Si-O-Fe band was only indicated in the spectrum of 

material with the highest Si/Fe ratio (replicate Ap_1). The local absorption maximum at 1042 cm-1 

is mainly induced by polysaccharides (C-O-C stretch, C-OH stretch), which is also predominant in 

the Fe-OM co-precipitate-free control with effluent OM (EA-7). The shoulders at 1100 cm-1 and 975 

cm-1 in the spectra of the Fe-OM co-precipitate-containing material are caused by adsorbed sulfate 

(Peak et al. (1999); Figure 3). Its contribution increased with increasing relative S content in the 

Fe-OM co-precipitates from Ah-derived effluents, i.e. with ascendant fraction number (Figure 1E). 



  

 12

Detection of adsorbed phosphate (1088, 1021 and 952 cm-1; Arai and Sparks (2001)) was impeded 

by superposing bands of effluent OM and the absence of distinct shoulders (Figure 3). This was 

likely related to the freeze-drying of the Fe-OM co-precipitates, which results in a rather broad 

band at 1036 cm-1 induced by adsorbed phosphate (Wang et al., 2013). Adsorbed As, Si, and 

sulfate could not be traced in spectra of the Fe-OM co-precipitate-free controls, which points to the 

interaction of these compounds with the Fe-OM co-precipitates. We are aware that the cited 

studies rely on ATR-FTIR spectra, which might impair applicability on transmission-FTIR spectra. 

However, all features from transmission spectra were also present in corresponding ATR-FTIR 

spectra (Figure EA-17). 

3.4. OM composition in the Fe-OM co-precipitates 

FTIR spectra from freeze-dried, dialyzed soil effluent fractions could not be used for the 

characterization of Fe-associated OM due to interferences by free particulate effluent OM that 

could not be removed from the effluent. For this reason, ATR-FTIR spectra of filter cakes were 

used to distinguish between free effluent OM and OM in the Fe-OM co-precipitates. We assume 

the filter cakes to consist solely of Fe-OM co-precipitates, which is indicated by the absence of 

OC>0.45µm in samples free of Fe>0.45µm (Figure EA-5). Positive matrix factorization (PMF) revealed 

that two components were required to reconstructed the contribution of the filter material and the 

Fe-OM co-precipitates to the measured ATR-FTIR spectra (Figure 5A,D). Indicated by the 

congruence between the pure filter spectrum and component 1 (Figure EA-18), PMF was able to 

separate filter-induced bands from Fe-OM co-precipitate-induced bands in the ATR-FTIR spectra. 

The PMF component specifying the latter (component 2, Figure 5B,E) exhibited local absorption 

maxima at 1630 cm-1 (amide I and H-O-H deformation), 1555 cm-1 (amide II), 1400 cm-1 (sym. 

COO- stretch) and 1042 cm-1 (C-O-C stretch, C-OH stretch in polysaccharides; adsorbed 

phosphate (Wang et al., 2013)). A tailing at 1600 cm-1 (asym. COO- stretch) and a shoulder at 

~1440 cm-1 (CH3 deformation, -CH2- scissoring) were also pronounced. Consequently, the OM in 

the Fe-OM co-precipitates was composed of proteins, carboxyls and polysaccharides. 

Comparing measured spectra with reference spectra is the general idea of differential spectra and 

discloses features that are unrevealed in whole spectra (Dryer et al., 2008). In our study, 

component 2 from PMF can be understood as average ATR-FTIR spectrum of all Fe-OM co-

precipitates from either Ah-derived or Ap-derived effluent. This PMF component was used as 

reference spectrum, to which all measured spectra from the corresponding soil material were 

referred. The differences between reference and measured spectrum was quantified as residual 

spectrum (Figure 5C,F). In the PMF assay with spectra of Fe-OM co-precipitates from Ah-derived 
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effluent, component 2 exhibited locally enlarged confidence intervals (Figure 5B). These were 

induced by the variable contents of (in)organic compounds in the Fe-OM co-precipitates. Following 

Lambert-Beer law (Davis et al., 1999), positive residuals between the measured vs. the reference 

spectrum are obtained if the content of the respective IR-active compound exceeds its mean 

content. With increasing ratios of OC/Fe in the Fe-OM co-precipitates from Ah-derived effluents 

(with ascendant effluent fraction number; Figure 1A), the residuals consequently shifted from 

negative to positive values at all wavenumbers related to OM (Figure 5C). This was inversed for 

Si-O-Fe (930 cm-1; Figure 5C) since the Si content in the Fe-OM co-precipitates decreased with 

increasing PVs. In comparison to Ah, component 2 from the PMF-assay with Ap-derived Fe-OM 

co-precipitates exhibited smaller confidence intervals. This points to rather constant OM contents 

in these Fe-OM co-precipitates, which agrees with their comparably invariable OC/Fe ratio (Figure 

1A). Different polysaccharide contents in the Fe-OM co-precipitates from the effluents of the two 

replicate Ap-soil columns were indicated by solely positive residuals between 1100-950 cm-1 for 

one column (Figure 5F) and solely negative residuals for the replicate column (Figure EA-21F). 

With respect to the similar P contents in these Fe-OM co-precipitates (Figure 1C), this observation 

also confirms that the broad band at ~1040 cm-1 cannot be induced by adsorbed phosphate solely. 

4. DISCUSSION 

4.1. Elemental composition of the Fe-OM co-precipitates at transient conditions 

The relevance of non-equilibrium conditions in soils is emphasized by the observable distinct 

changes in concentrations of effluent (in)organic compounds with dependence on the contact time 

between the liquid and solid phase. Flow interruptions, which increase the contact time, induced 

changes in effluent concentrations with respect to their total values and to their values relative to 

effluent Fe. Consequently, the Fe-OM co-precipitates precipitated from solutions with permanently 

variable amounts of (in)organic compounds. In accordance to the basic concept of liquid-solid 

distribution, higher relative effluent concentrations of P, Al, OC, and S mostly resulted in higher 

relative contents in the Fe-OM co-precipitates. Notwithstanding, shifts in Si and Ca contents in the 

Fe-OM co-precipitates were not correlated to corresponding shifts in the effluent concentrations of 

Si and Ca relative to Fe. We explain this observation as follows: Depending on the elemental 

composition of the precipitate, selected compounds from solution are consumed during the 

precipitation. Such compounds are less available or exhausted during the formation of subsequent 

precipitates, resulting in a temporal sequence of characteristic precipitate compositions. After Fe2+-

oxidation in pH-neutral solutions, Voegelin et al. (2010) observed the preferential precipitation of 

Fe(III)phosphates as long as phosphate was available and the formation of ferrihydrite as long as 
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silicate was available. Finally, lepidocrocite formed when silicate was sufficiently depleted. 

Likewise, Fe(III)arsenates preferentially precipitated from oxidized Fe2+-solutions as long as 

arsenate was available, while lepidocrocite formed in the absence of arsenate and phosphate (van 

Genuchten et al., 2014). The shifts in elemental composition of the Fe-OM co-precipitates, which 

were observed in the different effluent fractions, suggest that such a sequential precipitation also 

applies to the soil-derived solutions of our study. The quantitative association of P and As with the 

Fe-OM co-precipitates can be explained with the preferential formation of phosphate/arsenate-

linked Fe(III) oligomers until P and As are depleted from the effluent. In contrast to the ratios of 

effluent As/Fe, the ratios of effluent P/Fe increased with increasing PVs. Assuming constant P 

contents in the phosphate-linked Fe(III) oligomers, a greater proportion of effluent Fe is present as 

Fe(III)phosphate in the later effluent fractions compared to the early effluent fractions. With 

increasing molar ratios of effluent P/Fe, a lower proportion of Fe polyhedra was therefore available 

to interact with effluent silicate. Thus, increasing P/Fe in the Fe-OM co-precipitates resulted in 

decreased Si/Fe in the Fe-OM co-precipitates. This is particularly pronounced if the Ah- and Ap-

soil columns are considered separately (Figure 1I). The exhaustion of available Fe for interaction 

with silicate is also indicated by Si/Fe ratios in the Fe-OM co-precipitates, which continuously 

diverge from the 1:1 correlation to effluent Si/Fe with increasing PVs, i.e. with increasing effluent 

P/Fe. This exhaustion of available Fe polyhedra explains the decreasing Si/Fe in the Fe-OM co-

precipitates with increasing effluent Si/Fe ratios. We exclude a hypothetic interference of Al on 

these P/Fe vs. Si/Fe interdependencies, although Al/Fe ratios in the Fe-OM co-precipitates also 

increased continuously with increasing PVs (similar to P/Fe; Figure 1F). This is based on the fact 

that the mentioned P/Fe vs. Si/Fe-correlation also applied to the Ap-derived effluents, in which Al 

was not detected (Figure 1F). Voegelin et al. (2010) also observed the bridging of Fe(III)-

phosphate oligomers by Ca2+, which was confirmed by van Genuchten et al. (2014), who also 

revealed that this effect was existent but less pronounced for Fe(III)-arsenates. Since As/Fe was 

constant in the Fe-OM co-precipitates, one would consequently expect increasing Ca/Fe in the Fe-

OM co-precipitates with increasing P/Fe, i.e. with increasing PVs. This was observed in our study, 

except for one soil column (Ah_replicate; Figure 1H). Nevertheless, a maximum P/Fe ratio of the 

Fe-OM co-precipitates was accompanied by a maximum Ca/Fe ratio in each treatment, although 

the availability of Ca was comparably constant in all effluent fractions (effluent Ca/Fe in Figure 1G). 

It is worth mentioning that the shifts in the average elemental composition of Fe-OM co-

precipitates from OM-containing soil-derived solutions agree with the expected shifts that arise 

from the sequential formation of variable Fe-rich precipitates, which was proposed for pure 

inorganic systems (van Genuchten et al., 2014; Voegelin et al., 2010). It is known that e.g. the 

Fe3+-nucleation is favored at protein micelle surfaces and results in the formation of disordered 
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ferrihydrite (Kashyap et al., 2014). Nevertheless, the polymerization of Fe polyhedra, which are 

linked via phosphate, arsenate and Ca, is relevant in soil solutions, which contain organic species 

such as proteins. 

4.2. Composition of OM in the Fe-OM co-precipitates at transient conditions 

In our study, the Fe-OM co-precipitates from oxidized, soil-derived Fe2+-containing solutions are 

associated with proteins and polysaccharides. This agrees with observations of Fe-OM-co-

precipitates in streambeds (ThomasArrigo et al., 2014) and in soils, in which poorly crystalline Fe 

minerals significantly correlated with concentrations of aliphatic and amide C (Mikutta et al., 2009). 

The proteins and polysaccharides very likely originated from microbial extracellular polymeric 

substances (EPS; Omoike et al. (2004)). Thus, microbial Fe(III) reduction, which contributed to the 

microbial activity in the experimental setup, is a source for OM that is associated with the Fe-OM 

co-precipitates. Due to their hydrophilic character, proteins and polysaccharides represent a 

prominent fraction of OM in the aqueous phase and are therefore available for interaction with the 

Fe-rich precipitates. Comparing both topsoil materials, the Fe-associated OM in Ap-derived 

effluent was enriched in polysaccharides while the Fe-associated OM in Ah-derived effluent 

contained more proteins. This is indicated by corresponding IR absorption bands in the respective 

PMF components (Figure 5B,E; Figure EA-6B). The higher OC content in the Fe-OM co-

precipitates from Ah-derived effluents despite similar effluent OC/Fe ratios and the higher 

proportion of proteins in this Fh-associated OM points to a higher availability of proteins in the Ah-

derived effluent compared to Ap-derived effluent. Higher protein concentrations in Ah-derived 

effluent agree with the more intensive and sustained microbial Fe(III) reduction in Ah. This is likely 

linked with the higher absolute and relative content of low crystalline Fe oxides in Ah compared to 

Ap (Table EA-1). However, while the transient effluent composition resulted in variable OM content 

in the Fe-OM co-precipitates, its composition was rather static. This is indicated by the fact that 

only one PMF component was required to sufficiently address the IR absorption of all effluent Fe-

OM co-precipitates from one soil material. This observation can be explained either by an 

invariable composition of effluent OM or by the selective uptake of a permanently available OM 

fraction by the Fe-OM co-precipitates. According to the literature, we expect a rather variable 

composition of soil effluent OM (Weigand and Totsche, 1998). Furthermore, OM fractionation, e.g. 

due to association with ferrihydrite has been described previously (Eusterhues et al., 2011), 

rendering this scenario more likely. For more substantial statements, further investigations are 

required, which explicitly acknowledge the prevalence of transient conditions in soils and other 

natural systems. 
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Concerning the Ah-derived effluents, the close association between OC and S was indicated by 

the similar removal from the effluent during dialysis (Figure EA-11C,D) and the comparable 

distribution of free vs. Fe-associated OC and S (Figure 1A,E). We therefore suppose the 

association of organic S with the Fe-OM co-precipitates besides sulfate-S. This association agrees 

with mainly organically bound S in topsoil horizons (Prietzel et al., 2013) and high S content in 

proteins that preferably adsorb on goethite (Liu et al., 2013). 

4.3. Structural changes in the Fe-OM co-precipitates at transient conditions 

The constant center shifts in the Mössbauer spectra of all Fe-OM co-precipitates (δ ~ 0.48 mm s-1 

at 77 K; Table 1) indicate a constant Fe valence despite their different elemental composition 

(Cornell and Schwertmann, 2003). Because the source was always at room temperature while the 

absorber was cooled, the center shift values at temperatures below room temperature reflect the 

sum of the center shift and the temperature dependent second order Doppler shift. At room 

temperature, a value of δ = 0.36 mm s-1 was obtained for the Ap1_replicate (0.47 mm s-1 at 77 K) 

and is assumed for the remaining Fe-OM co-precipitates. This value is in accordance with the 

exclusive presence of Fe(III) (e.g. Gütlich and Schröder (2012)) and falls into the range of reported 

low-crystalline Fe oxides, which reacted with inorganic (e.g. As; Rancourt et al. (2001)) and 

organic compounds (Eusterhues et al., 2008; Mikutta et al., 2008). 

Two components with identical δ but variable electric quadrupole splittings (∆EQ) were applied to fit 

the asymmetric doublets in the 77 K-Mössbauer spectra. This implies the coexistence of a range of 

∆EQ in each Fe-OM co-precipitate in accordance with polyhedral Fe coordination to accommodate 

a large variety of cations. The probability distributions of ∆EQ were positively skewed with most 

probable ∆EQ ~ 0.7 mm s-1 and a strong tailing up to ~2 mm s-1 (Table 2, Figure 2A,C). In Fe(III) 

minerals, ∆EQ is influenced by interactions of Fe with other ions in the mineral lattice (Rancourt, 

1998). Higher ∆EQ correspond to a higher degree of distortion relative to a perfect polyhedral ligand 

electric field (Rea et al., 1994). Such lattice distortions arise due to the presence of foreign ligands 

other than O and OH, e.g. DOM (Eusterhues et al., 2008), Al (Cismasu et al., 2012), Si (Cismasu 

et al., 2014) and P (Voegelin et al., 2010). The broad distribution of ∆EQ indicates the coexistence 

of different Fe(III) environments in the Fe-OM co-precipitates, each with a characteristic degree of 

lattice distortion. Beside Fe oxide composition-induced shifts in ∆EQ, positively skewed 

distributions of ∆EQ were also explained with surface effects, in which surface-near Fe(III) 

polyhedra exhibit a more deformed coordination than the inner Fe(III) polyhedra (De Grave et al., 

1986; Rea et al., 1994). A high proportion of surface-near Fe sites would also contribute to the 

pronounced tailing at higher ∆EQ as observed in our study (Figure 2A,C), provided that the 
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crystallite sizes of the Fe-OM co-precipitates are comparably small. Referring to Fe oxide 

precipitation experiments with DOM (Eusterhues et al., 2008), Si (Cismasu et al., 2014) and As 

(Erbs et al., 2010; Rancourt et al., 2001), small crystallite sizes can be assumed for the Fe-OM co-

precipitates in our study. The absence of distinct reflexes in the X-ray diffractograms indicates the 

absence of enhanced scattering domains and therefore supports this assumption (Figure EA-14). 

Contrary to our expectations, ∆EQ-distributions were not shifted towards higher values for Ah-

derived Fe-OM co-precipitates with increasing contents in OC, Al and P, i.e. with increasing PVs 

(Figure 2A,C). Theoretically, the OC/P/Al-induced increase in lattice distortion could have been 

outbalanced by the coincidently decreasing average Si content in the Fe-OM co-precipitates. We 

exclude this scenario due to the small decrease in Si/Fe of ~0.03 (Figure 1D) compared to the 

coincident increase in P/Fe (~0.1) and OC/Fe (~1) and the comparably low distortion effect by Si 

(Rancourt et al., 2001). Although the distribution of ∆EQ contains the most crystal chemical 

information, which can be extracted from a Mössbauer spectrum (Rancourt et al., 2001), any 

changes in the crystallinity of the Fe-OM co-precipitates of our study may not be reflected by 

according shifts in the ∆EQ-distributions. Such difficulties arise in the evaluation of Mössbauer 

spectra, if low-crystalline phases are compared with even lower crystalline phases (De Grave et 

al., 1986). This is the particular difference of our study compared to other studies, in which pure Fe 

oxides were treated with stepwise increased concentrations of additives (e.g. Eusterhues et al. 

(2008); Mikutta et al. (2008)). In contrast to our study, the expected trend of increasing ∆EQ with 

increasing lattice distortion could be revealed in the cited studies. An alternative explanation of the 

constant ∆EQ is that increasing contents in OC, Al and P exclusively sorbed to the surface of 

crystallites rather than being incorporated into the crystal structure. However, this contradicts with 

the observed elemental compositions of the Fe-OM co-precipitates, which pointed to the linkage of 

Fe polyhedra via phosphate, arsenate and Ca ions (section 4.1.). 

In the 5 K-Mössbauer spectra, two components with the same ∆EQ and δ but variable magnetic 

hyperfine fields (Bhf) were applied to fit the asymmetric sextets. With one exception (discussed 

below), the obtained Bhf distributions were negatively skewed and covered a wide range of 35 - 53 

T (Table 2, Figure 2B,D). In their study on magnetically-split ferrihydrite, Murad and Schwertmann 

(1980) presented negatively skewed Bhf distributions covering a broad range from <40 T to 55 T, 

while the lower Bhf values were more pronounced in natural samples. A lower Bhf at constant ∆EQ 

points to a higher perturbation of crystallite interactions (Morup and Ostenfeld, 2001). Murad and 

Schwertmann (1980) assumed the existence of planar arranged Fe(O,OH)6 octahedra without any 

stacking perpendicular to that plane in the samples with low Bhf. Considering their average Bhf ~ 46 

T (Table 2), which is below the reported range of 47 - 50 T for ferrihydrite (Cornell and 

Schwertmann, 2003), such elementary arrangements of Fe polyhedra can also be expected in the 
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Fe-OM co-precipitates from our study. In contrast to ∆EQ, a consistent shift in Bhf-distributions to 

lower values was observed for the Fe-OM co-precipitates with increasing contents in OM, P and 

Al, i.e. with increasing PVs. Such compounds are known to decrease the crystallite interactions 

due to magnetic dilution (Cornell and Schwertmann, 2003; Mikutta et al., 2008). Increased 

contents of such “foreign” species in the Fe precipitates will therefore result in an increase of lower 

Bhf at the expense of higher Bhf and will consequently induce the observed Bhf-distribution shift to 

lower values. The crystallite interactions and thus the long-range order, if any in the Fe-OM-co-

precipitates, are therefore decreased with increasing PVs. Because of their different oxidation 

states, the increased incorporation of foreign species such as OM, P, and Al may be more 

reflected by Bhf-values in the 5 K-spectra compared to ∆EQ-values in the 77 K-spectra. While 

distortion of polyhedral leading to differences in ∆EQ depends on the foreign cations ionic radius, 

cations with an oxidation state different from Fe(III)-cations result in the decrease of Bhf values. 

The average values of ∆EQ and Bhf indicate the predominance of very low-crystalline ferrihydrite in 

the Fe-OM co-precipitates. The Fe-OM co-precipitates from the Ap-derived effluents are slightly 

more crystalline than those from the Ah-derived effluents, which comprises less distorted Fe sites 

(lower ∆EQ) and more intense crystallite interactions (higher Bhf). The significant presence of As 

exclusively in the Ah-derived Fe-OM co-precipitates (As/Fe ~ 0.06, Figure 1B) very likely 

contributed to these differences. Incorporated As is known to increase structural disorder and thus 

∆EQ (Rancourt et al., 2001) and decrease crystallite interactions and thus Bhf (Erbs et al., 2010). 

The very low Bhf, which are represented by a dedicated component with Bhf < 44 T, might indicate 

the presence of lepidocrocite as previously detected in Fe- and As-rich organic flocs from 

streambeds (ThomasArrigo et al., 2014). If magnetically ordered, lepidocrocite exhibits Bhf < 46 T, 

which is lower than ferrihydrite (Murad and Schwertmann, 1984). However, in a paramagnetic 

state, the lepidocrocite ∆EQ value is significantly lower than that of ferrihydrite (0.53 mm s-1 

compared to 0.62-0.78 mm s-1, respectively; Murad and Cashion (2004)). The presence of 

lepidocrocite is therefore not consistent with our 77 K-results. Assuming that Mössbauer recoilless 

fractions of all Fe-bearing components are equal, such that subspectral areas match to the Fe 

amount in the corresponding phase, lepidocrocite should be present in significant amounts (30 - 

40% of FeTotal; Table 2: P(%) of component 2 in the fits of the 5 K-spectra). This assumption is valid 

at cryogenic temperatures (Rancourt, 1998). Even if lepidocrocite would be low-crystalline and X-

ray amorphous (ThomasArrigo et al., 2014), the lepidocrocite-typical short-range order is 

detectable in vibrational spectra, i.e. in FTIR spectra. Consequently, distinct bands and/or 

shoulders from lepidocrocite are mandatory in the FTIR spectra of the Fe-OM co-precipitates if 

lepidocrocite would represent this important constituent in the Fe-OM co-precipitates as indicated 

by Mössbauer spectroscopy. This is still valid under consideration of band shifting and broadening, 
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which was observed in the FTIR spectra of low-crystalline lepidocrocite (Schwertmann and 

Wolska, 1990). However, we could not detect bands in the FTIR spectra characteristic of 

lepidocrocite (Figure 3). We therefore exclude its presence in the Fe-OM co-precipitates from soil 

effluents. Voegelin et al. (2010) and Schwertmann et al. (2005) observed no precipitation of 

lepidocrocite as long as silicate and OM from a humus layer, respectively, were available to 

precipitate with Fe. As indicated by higher ratios of OC/Fe and Si/Fe in the effluent compared to 

their relative contents in the Fe-OM co-precipitates (Figure 1A,D), both compounds were not 

depleted from solution during the formation of the Fe-OM co-precipitates. This excess in aqueous 

silicate and OM renders the precipitation of lepidocrocite unlikely. 

A significant presence of Fe(III)phosphate and Fe(III)arsenate as demonstrated in Mikutta et al. 

(2014a) can also be excluded, because both phases are lacking magnetic ordering at 5 K. We 

observed neither doublets nor collapsed sextets in the 5 K-Mössbauer spectra of the soil effluent-

derived Fe-OM co-precipitates. The absence of Fe(III)phosphates was not expected with respect 

to the shifts in the mean elemental composition of the Fe-OM co-precipitates. Assuming a 

stoichiometric ratio of P/Fe = 0.5 in Fe(III)phosphates (Gunnars et al., 2002; Lienemann et al., 

1999; Thibault et al., 2009), 3 - 18% of FeTotal would be present as Fe(III)phosphate, which is above 

the detection limit of ~2% FeTotal in Mössbauer spectroscopy. A possible explanation is that 

structural modifications of the Fe(III)phosphates from pH-neutral solutions (this study) compared to 

such from strongly acidic solutions (pH < 2; Mikutta et al. (2014a)) could have increased their Néel 

temperature, which would allow magnetic ordering of the former at 5 K. However, the magnetic 

properties of Fe(III)phosphates/arsenates in dependence on the formation conditions must be 

investigated in dedicated experiments to allow robust statements. 

Considering the distributions of ∆EQ and Bhf, the Fe-OM co-precipitates from one of the Ap-soil 

columns (Ap_1) were clearly different from the remaining Fe-OM co-precipitates (Figure2). The 

contribution of higher Bhf could be explained with the presence of small amounts of nanogoethite. 

This Fe oxide phase was detected in marine sediments (van der Zee et al., 2003) and in soils 

(Thompson et al., 2011). Bhf-values of nanogoethite peak at ~50 T (Thompson et al., 2011). Since 

Guyodo et al. (2003) revealed superparamagnetic nanogoethite at temperatures >35 K, the 

absence of sextets in the 77 K-spectrum of Ap_1 would not be contradictory to the presence of 

such low-crystalline goethite. However, the shift in ∆EQ-distribution to values <0 mm s-1 is contrary 

to the presence of nanogoethite. Doublets of superparamagnetic goethite were described with ∆EQ 

~ 1 mm s-1 (Bocquet et al., 1992), which even exceeds ∆EQ for doublets of low-crystalline 

ferrihydrite (~0.8 mm s-1). Consequently, the presence of nanogoethite in the Fe-OM co-

precipitates should result in a ∆EQ-distribution shift to higher values, which is opposed to the 

observation. In addition, goethite can be distinguished by its low ε (quadrupole shift) value of 
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-0.125 mm s-1 in magnetically ordered spectra (Cornell and Schwertmann, 2003) compared to ε ~ 

-0.010 mm s-1 measured for the Fe-OM co-precipitates from Ap_1. Consequently, we cannot 

attribute the shifts in ∆EQ- and Bhf-distributions of Ap_1 to the presence of minor amounts of 

nanogoethite. We also cannot provide a further explanation for this observation on basis of the 

present data other than that this may be an artefact of the poor signal-to-noise ratio in the spectra 

from this particular sample. Additionally, these distribution shifts were not reproduced in the 

effluent from the replicate soil column (Figure 2). The absence of nanogoethite in all Fe-OM co-

precipitates may be related to the constant availability of significant amounts of OM, P, Al, Si and 

As (only in Ah-derived effluent). Soil OM (Schwertmann, 1966), P (Châtellier et al., 2013), Al 

(Masue-Slowey et al., 2011), silicate (Cismasu et al., 2014) and As (Ford, 2002) are known to 

stabilize Fe polyhedra in very primitive arrangements, i.e. low-crystalline ferrihydrite. 

4.4. Colloidal properties of the Fe-OM co-precipitates 

The degree of aggregation of the Fe-OM co-precipitates decreased with increasing PVs resulting 

in smaller aggregate sizes with ascendant effluent fraction numbers. Despite the formation of >100 

nm aggregates, very small-sized aggregates (<20 nm) were permanently present in all effluent 

fractions independent of the aggregation intensity. This points to an aggregation that could not 

affect all particles homogeneously but rather ceased at a certain point of time when both large and 

small aggregates had formed. As a consequence, a continuum of Fe-OM co-precipitate aggregate 

sizes must be expected after oxidation of Fe2+ in soil-derived solutions. Solely electrostatic 

repulsion was insufficient to prevent aggregation considering |UE| < 30 mV for all colloidal Fe-OM 

co-precipitates (Table 1, Stumm and Morgan (1996)). The Fe-OM co-precipitates were rather 

stabilized against further aggregation (time-frame: months) due to steric repulsion between the 

moieties of the aggregate-associated OM. The measured UE agreed with natural OM-stabilized 

nanomaterials from natural aqueous systems (Loux and Savage, 2008).   

4.5. Applicability of soil column outflow experiments 

Although the investigated topsoils differed in their texture, composition and utilization, they showed 

a similar response to shifts in the redox regime from oxic to anoxic conditions. In both topsoils, 

limited supply of O2 due to microbial activity under water-saturated conditions resulted in microbial 

Fe(III) reduction. Despite the different effluent composition, similarly composed Fe-OM co-

precipitates formed in all fractions after oxidation of effluent Fe2+. This experimental setup 

represents an approach to utilize self-contained soil systems on laboratory scale to produce soil-

relevant Fe-OM co-precipitates. 
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5. ENVIRONMENTAL IMPLICATIONS 

As expected, the elemental composition of the Fe-OM co-precipitates is highly dependent on the 

composition of the solution, from which they precipitate. In light of the transient composition of soil 

solutions, highly variable elemental compositions of Fe-OM co-precipitates can be expected in 

redoximorphic soils and other transient systems with redox changes and boundaries. The shifts in 

average elemental compositions of the Fe precipitates can be explained with the sequential 

precipitation of Fe(III)phosphates/arsenates before low-crystalline Fe oxides will form. This was 

proposed for inorganic systems (Voegelin et al., 2010) but applies surprisingly well also to soil-

derived solutions, which contain a multitude of organic compounds, which likely affect the Fe(III) 

nucleation and polymerization of Fe polyhedra. Following the idea of sequential precipitation of 

Fe(III)phases, the competition for association with Fe polyhedra, e.g. between phosphate and 

silicate, is therefore predictable in transiently composed solutions even in presence of organic 

compounds. 

Independent from solution composition, a broad size distribution of the Fe-OM co-precipitate 

aggregates must be expected after their aggregation has finished. This broad distribution involves 

colloidal and non-colloidal fractions, which will consequently result in highly diverse mobility and 

availability of the Fe-OM co-precipitates. Unaffected by their elemental composition, the Fe-OM co-

precipitates could be best described as very low-crystalline ferrihydrite, while a considerable 

fraction exhibited even lower crystallinity than characteristic of ferrihydrite. Such Fe-OM co-

precipitates can be regarded as initial Fe-bearing phase after Fe2+-oxidation in soil-derived 

solutions. They differ from lake and marine sediments (van der Zee et al., 2003), mine tailings 

(Filip et al., 2007) and soils (Thompson et al., 2011), in which nanogoethite contributed to the 

mineral composition. However, we would not expect dramatic differences in the properties of these 

low-crystalline phases and their function in the environment. This expectation is based on Murad 

and Schwertmann (1980), who stated that individual characteristics of the different Fe oxides 

gradually disappear as particle sizes decrease and finally only fundamental structural elements of 

short-range order common to all Fe oxides remain, i.e. the Fe(O,OH)6 octahedra. For related 

studies on the properties of Fe phases, which are characteristic of soils and sediments, we 

recommend the soil column outflow experiments to produce such Fe phases on laboratory scale. 

Owing to the significant presence of proteins and polysaccharides in the soil effluent-derived Fe-

OM co-precipitates, we expect significant differences in their biogeochemical behavior compared 

to synthetic counterparts, which are synthesized with organic proxies, e.g. humic substances. This 

was recently confirmed concerning their ecotoxicity (Höss et al., 2015). 
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Table 1. Electric conductivity (EC), pH and Fe size distribution in the soil effluent fractions and 

properties of the effluent colloids. repl: replicate soil column. BD: before dialysis. AD: after dialysis. 

<0.45: 0.45 µm-filtered effluent. dH: hydrodynamic diameter. UE: Zeta potential. Ah: material from a 

humus-rich topsoil of the floodplain site. Ap: material from a ploughed topsoil of the agriculture site 

(Table EA-1). Exchanged pore volumes quantify the effluent volume in relation to the water-accessible 

pore space volume within the soil column (Ah: 686 cm3 (repl: 664 cm
3
), Ap: 506 cm3 (repl: 510 cm

3)). 

soil 
effluent 
fraction 

 
exchanged 

pore volume 

pH 
EC 

(µS cm
-1
) Fe<0.45 ± σ 

(% FeTotal)
#
 

dH ± σ 
(nm) 

UE ± σ 
(mV) 

BD AD BD AD 

Ah 

Ah_1 
 0.00 - 0.59 7.9 5.7 442 5 10.1 ± 0.3 209 ± 80 -20 ± 5 

repl 0.00 - 0.62 7.9 5.8 429 7 7.8 ± 0.1 206 ± 83
a
 -21 ± 5 

Ah_2 
 0.60 - 1.17 7.8 5.7 342 7 28.4 ± 0.5 136 ± 60 -23 ± 7 

repl 0.63 - 1.23 7.7 5.7 282 5 36.0 ± 0.1 119 ± 51 -17 ± 8 

Ah_3 
 1.18 - 1.72 7.5 5.6 252 7 34.8 ± 0.4 62 ± 18

b
 -16 ± 9 

repl 1.24 - 1.82 7.5 5.5 225 5 51.0 ± 0.2 62 ± 23
c
 -17 ± 10 

Ah_4 
 1.73 - 2.27 7.3 5.5 209 6 45.7 ± 0.2 43 + 11

d
 -17 ± 9 

 repl 1.83 - 2.40 7.3 5.5 202 5 31.9 ± 0.4 54 + 18
e
 -18 ± 10 

Ap 

Ap_1 
 0.09 - 1.15 8.1 6.3 1145 10 0.6 ± 0.3 - 

f,g
 - 

g
 

repl 0.09 - 1.07 8.1 7.1 1033 23 0.2 ± 0.2 - 
f,g

 - 
g
 

Ap_2 
 1.24 – 1.77 8.2 5.9 703 7 22.1 ± 0.1 368 ± 222

f
 -15 ± 5 

repl 1.25 – 1.78 8.3 6.2 671 6 23.1 ± 0.6 281 ± 143
f
 -15 ± 4 

Ap_3 
 * 7.9 5.8 516 5 19.8 ± 0.3 217 ± 90

f
 -17 ± 4 

 repl * 7.9 5.8 495 5 23.9 ± 0.1 204 ± 77
f
 -17 ± 4 

# 
FeTotal concentrations can be found in Figure EA-8 (Ah-derived effluent) and EA-9 (Ap-derived effluent) 

* from subsequent percolations (same conditions; see Figure EA-4 for detailed explanation) 
a
 presence of a 2

nd
 size fraction (dH = 689 ± 251 nm; percentage on total scattering intensity: 31%)  

b
 presence of a 2

nd
 size fraction (dH = 512 ± 151 nm; percentage on total scattering intensity: 16%) 

c
 presence of a 2

nd
 size fraction (dH = 712 ± 239 nm; percentage on total scattering intensity: 20%) 

d
 presence of a 2

nd
 size fraction (dH = 510 ± 102 nm; percentage on total scattering intensity: 52%) 

e
 presence of a 2nd size fraction (dH = 974 ± 404 nm; percentage on total scattering intensity: 44%) 

f
 data from 0.45 µm-filtered effluent (unreliable data in unfiltered effluent due to interferences by non-colloids) 

g 
insufficient scattering intensity  
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Table 2. Center shifts (δ; relative to α-Fe), quadrupole splittings (∆EQ), quadrupole shifts (ε), magnetic 

hyperfine fields (Bhf) and distribution skew as obtained from fitted 57Fe-Mössbauer spectra of Fe-OM 

co-precipitates from the assigned soil effluent fractions (details in Table 1). Two Gaussian components 

(comp. 1 and 2) were used to achieve sufficiently good fits. Both comp. shared the same δ (77 K) and 

δ + ε (5 K) while the center positions of ∆EQ (77 K) and Bhf (5 K), the corresponding standard 

deviations (σ) and weight factors (P(%)) were fitted to the observed data. mean: composite of both 

comp. with average magnitude ± standard deviation of the ∆EQ- and Bhf-distributions (Figure 2). Χ²red: 

Χ²/number of degrees of freedom. repl: replicate soil column. Mössbauer spectra and fits are 

presented in Figure EA-13. All fitting and calculated parameters are as defined in Rancourt and Ping 

(1991). 

soil 
effluent 
fraction 

 comp. 77 K 5 K 

  (mm s
-1

)  (mm s
-1

) (T)  

  δ ∆EQ σ∆EQ P(%) Χ²red δ ε Bhf σBhf P(%) Χ²red 

Ah 

Ah_1 

 mean 0.48 0.88 ±±±± 0.36 (skew: 0.44) 0.48 -0.003 46.0 ±±±± 3.1 (skew: -1.4) 

 1  0.66 0.22 43 0.71   47.2 2.2 65 0.93 

 2  1.05 0.35 57    43.6 3.0 35  

repl 

mean 0.48 0.89 ±±±± 0.33 (skew: 0.48) 0.49 -0.005 45.9 ±±±± 3.1 (skew: -1.4) 

1  0.71 0.21 56 0.56   47.3 2.3 63 0.62 

2  1.12 0.30 44    44.0 3.0 37  

Ah_2 

 mean 0.47 0.89 ±±±± 0.37 (skew: 0.47) 0.49 -0.001 45.7 ±±±± 3.1 (skew: -1.4) 

 1  0.70 0.25 52 0.59   47.0 2.3 61 0.60 

 2  1.09 0.38 48    44.0 3.2 39  

repl 

mean 0.48 0.88 ±±±± 0.30 (skew: 0.44) 0.48 -0.002 45.7 ±±±± 3.2 (skew: -1.7) 

1  0.67 0.17 44 0.48   47.0 2.3 67 0.60 

2  1.05 0.28 56    43.0 3.2 33  

Ah_3 

 mean 0.48 0.87 ±±±± 0.33 (skew: 0.62) 0.49 0.012 45.1 ±±±± 3.3 (skew: -1.0) 

 1  0.64 0.15 47 0.52   46.7 2.4 62 0.51 

 2  1.08 0.30 53    43.0 2.9 38  

repl 

mean 0.49 0.87 ±±±± 0.35 (skew: 0.39) 0.48 -0.022 45.1 ±±±± 3.5 (skew: -2.4) 

1  0.63 0.20 34 0.57   46.2 2.5 78 0.51 

2  1.00 0.35 66    41.0 4.0 22  

Ah_4 

 mean 0.48 0.88 ±±±± 0.37 (skew: 0.62) 0.50 0.019 44.9 ±±±± 3.6 (skew: -1.4) 

 1  0.74 0.26 71 0.55   46.3 2.2 43 0.47 

 2  1.20 0.36 29    43.8 4.0 57  

repl  not measured not measured 

Ap Ap_1 

 mean 0.46 0.82 ±±±± 0.47 (skew: -0.44) 0.47 -0.010 46.6 ±±±± 4.0 (skew: 0.0) 

 1  0.40 0.80 49 0.52   only 1 component used 1.27 

 2  0.93 0.39 51      

repl 

mean 0.47 0.82 ±±±± 0.37 (skew: 0.31) 0.48 -0.003 46.3 ±±±± 3.1 (skew: -1.9) 

1  0.65 0.29 62 0.61   47.7 2.0 61 0.70 

2  1.10 0.33 38    44.0 3.1 39  
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Figure 1. Mean molar contents of (A) organic carbon (OC), (B) As, (C) P, (D) Si, (E) S, (F) Al and (G) 

Ca relative to the mean molar Fe content in Fe-OM co-precipitates (“solid”, y-axis) in dependence on 

the molar ratio of the corresponding elements and Fe in the effluent fractions (x-axis). Relative content 

of (H) Ca and (I) Si in dependence on the relative P content in the Fe-OM co-precipitates. Dashed line: 

1:1 correlation. More details on the effluent fractions are given in Table 1. Error bars denote the data 

processing-induced propagation of analytical errors. This may result in an altered visual appearance of 

the markers compared to the corresponding symbols in the legend.  
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Figure 2. Probability distributions (A,C) of the quadrupole splittings (∆EQ) and (B,D) of the magnetic 

hyperfine fields (Bhf) in the 77 K- and 5 K-Mössbauer spectra, respectively, of the Fe-OM co-

precipitates from the assigned soil effluent fractions (details in Table 1). Refer to Figure EA-13 for the 

original Mössbauer spectra and their fits.  



  

 30

 

Figure 3. Transmission-FTIR spectra of material (incl. Fe-OM co-precipitates) from dialyzed effluent 

fractions from the topsoil material (A) of the floodplain site (Ah) and (B) of the agricultural site (Ap). 

More details on the effluent fractions are given in Table 1. Spectra of “effluent OM” were obtained from 

corresponding effluent fractions without Fe-OM co-precipitates (treated according to EA-7). Dashed 

lines: wavenumbers of interest. Lp and Gt: diagnostic bands for lepidocrocite and goethite, 

respectively (out-of-plane OH-bending; Cornell and Schwertmann (2003)). For visualization purposes, 

FTIR spectra of effluent material from the replicate soil columns are shown in Figure EA-20. 
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Figure 4. Secondary electron (SE) images of Fe-OM co-precipitates from soil effluents. (A) Effluent 

fraction Ah_2 and (B) Ah_4 from the topsoil material of the floodplain site and (C) Ap_3 from the 

topsoil material of the agricultural site (refer to Table 1 for details). (D-F) Corresponding effluent 

fractions from the replicate soil columns. (G) Size distributions of the aggregated Fe-OM co-

precipitates in each effluent fraction obtained from triplicate SE image analysis. Value: number of 

counted aggregates. (H) Introduction to tailed boxplots. repl: effluent from replicate soil column. 
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Figure 5. (A,D) ATR-FTIR spectra of polyethersulfone filters covered with Fe-OM co-precipitates. 

(B,E) Spectra (solid line) and corresponding 95% confidence intervals (dashed lines) of the 2 

components derived from positive matrix factorization. (C,F) Difference (residual) between measured 

and reconstructed ATR-FTIR spectra. (A-C) refers to the effluent fractions obtained from the topsoil 

material of the floodplain site (Ah). (D-F) refers to the effluent fractions obtained from the topsoil 

material of the agricultural site (Ap; more details in Table 1). Vertical dashed lines: wavenumbers of 

interest. Spectra in (A) and (D) were normalized on intensity for better visualization. Original spectra 

and corresponding residuals can be found in Figure EA-19. For visualization purposes, FTIR spectra 

of the Fe-OM co-precipitates from the effluent fractions of the replicate soil column are shown in 

Figure EA-21. 

 


