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Let J be an m × m signature matrix (i.e. J∗ = J and J2 = Im) and

let D := {z ∈ C : |z|< 1}. Denote PJ(D) the class of all J-Potapov
functions in D, i.e. the set of all meromorphic m × m matrix-val-

ued functions f in D with J-contractive values at all points of D at

which f is holomorphic. Further, denote PJ,0(D) the subclass of all

f ∈ PJ(D) which are holomorphic at the origin. Let f ∈ PJ,0(D),

and let f (w) = ∑∞
j=0 Ajw

j be the Taylor series representation of f

in some neighborhood of 0. Then it was proved in [B. Fritzsche, B.

Kirstein, U. Raabe, On the structure of J-Potapov sequences, Linear

Algebra Appl., in press] that for each n ∈ N the matrix An can be

described by its position in amatrix ball depending on the sequence

(Aj)
n−1
j=0 . The J-Potapov function f is called J-central if there exists

some k ∈ N such that for each integer j � k the matrix Aj coincides

with the center of the corresponding matrix ball.

In this paper, we derive left and right quotient representations of

matrix polynomials for J-central J-Potapov functions in D. More-

over, we obtain recurrent formulas for the matrix polynomials

involved in these quotient representations.
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0. Introduction

This paper continues the systematic study of J-Potapov functions which was started in the papers

[8,9]. The class of J-Potapov functions originates in the fundamental paper [10] by V.P. Potapov, who

developed a far-reaching factorization theory for these functions. Themain object of the present paper

is a distinguished subclass of J-Potapov functions which was introduced in [9, Section 5], namely the

subclass of J-central J-Potapov functions. This subclass is a natural generalization of the class of all

central p × q Schur functions which were introduced in [5] (see also [2]). The investigation of the

matricial Schur problem clarified the distinguished role of central p × q Schur functions. In the paper

[7], there was worked out an approach to the matricial Schur problem in both nondegenerate and

degenerate cases which is based on an intensive use of central p × q Schur functions. Here special

representations of central p × q Schur functions as left and right quotients of suitable matrix polyno-

mials, which were obtained in [6], played the key role in the computation of the solution set of the

matricial Schur problem in the general case. In the nondegenerate case, the description of the solution

set coincides with that parametrization which was given by Arov/Krein [1] (see also [2, Section 3.10]).

The particular matrix polynomials which realize the left and right quotient representations of central

p × q Schur functions coincide in the nondegenerate case up to a normalizing (left or right) factorwith

the particular matrix polynomials which were used by Arov/Krein [1].

The main goal of this paper is to construct appropriate matrix polynomials with the aid of which

left and right quotient representations of J-central J-Potapov functions can be realized. On this way,

we are guided by the strategy which was used in [6]. In the particular case that the signature matrix J

coincideswith them × munitmatrix Im we reobtain representations of centralm × m Schur functions

as left and right quotients of matrix polynomials, which were constructed in [6].

The main results of this paper form the basis of our approach to the treatment of the interpolation

problem for J-Potapov functions in both nondegenerate and degenerate cases. This will be done in

subsequent work.

This paper is organized as follows. In Section 1, we summarize some basic facts on J-Potapov func-

tions in the open unit disk, J-Potapov sequences and their interrelations. These results originate from

[8,9].

In Section 2, we prove the announced representations of J-central J-Potapov functions as left and

right quotients of matrix polynomials (see Theorems 2.7 and 2.8). It will be shown (see Propositions

2.18 and 2.19) that the left and right quotient representations can be chosen in suchway that the zeros

of the determinant of the “denominator matrix polynomials” are exactly the poles of the J-central

J-Potapov function under consideration.

Section 3 is devoted to create recursive constructions of the matrix polynomials which were found

in Section 2 to generate left and right quotient representations of J-central J-Potapov functions.

In Section 4, we will consider those matrix polynomials which will turn out to play later the role of

a resolventmatrix for the general (possibly degenerate) interpolation problem for J-Potapov functions.

In particular, we will obtain representations of these matrix polynomials as a product of elementary

factors (see Proposition 4.3). The results of Section 4 generalize some facts which were obtained in [7,

Section 4] for the case of a given finite p × q Schur sequence.

In the final Section 5, we consider the case of a given finite strict J-Potapov sequence which allows

to simplify some of the foregoing results obtained for a general J-Potapov sequence.

1. Some preliminaries on J-Potapov functions in the open unit disk and on J-Potapov sequences

Throughout this paper, let m be a positive integer. We will use the notations N, N0, and C for the

set of all positive integers, the set of all nonnegative integers, and the set of all complex numbers,

respectively. If s ∈ N0 and κ ∈ N0 ∪ {+∞}, then Ns,κ denotes the set of all integers n satisfying

s� n� κ . Further, let D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1}.
Let p, q ∈ N. Then Cp×q designates the set af all complex p × qmatrices. The notation 0p×q stands

for the null matrix which belongs to Cp×q, and the identity matrix which belongs to Cq×q will be

designated by Iq. In cases where the size of a null matrix or the size of an identitymatrix is obvious, we
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will omit the indeces. If A ∈ Cp×q, then A+ stands for the Moore–Penrose inverse of A. Furthermore,

for each A ∈ Cp×q, let R(A) be the range of A and let N (A) be the nullspace of A.

We will write C
q×q
� (respectivly, C

q×q
> ) to denote the set of all nonnegative (respectively, positive)

Hermitian matrices belonging to Cq×q. In the set C
q×q
H of all Hermitian q × qmatrices we will use the

Löwner semi-ordering, i.e., we will write A� B or B � A to indicate that A and B are Hermitianmatrices

of the same size such that B − A is nonnegative Hermitian.

Let n and p1, . . . , pn be positive integers, and letAj ∈ Cpj×pj for each j ∈ N1,n. Then diag(A1, . . . , An)
denotes the block diagonal matrix with diagonal blocks A1, . . . , An.

If f is anm × mmatrix-valued functionwhich ismeromorphic in theopenunit diskD, then letHf be

the set of all points at which f is holomorphic. Let J be anm × m signaturematrix and let f be a Cm×m-

valued function which is meromorphic in D. Then f is called a J-Potapov function in D (respectively, a

strong J-Potapov function inD), if for eachw ∈ Hf thematrix f (w) is J-contractive (respectively, strictly

J-contractive). Here amatrix A ∈ Cm×m is called J-contractive (respectively, strictly J-contractive), if the

matrix J − A∗JA is nonnegativeHermitian (respectively, positiveHermitian). For eachm × m signature

matrix J,wewill use thenotationPJ(D) (respectively,P ′
J (D)) todenote the setof all J-Potapov functions

inD (respectively, strong J-Potapov functions inD).Wewill turnparticular attention to a distinguished

subclass of PJ(D), namely the class

PJ,0(D) := {f ∈ PJ(D) : 0 ∈ Hf }.
In the case J = Im the classes PJ(D) and PJ,0(D) coincide. Indeed, PIm(D) is exactly the set Sm×m(D)

of allm × m Schur functions in D, i.e. the set of all matrix-valued functions f : D → Cm×m which are

holomorphic in D and the values of which are contractive complex m × mmatrices.

Observe that the well-known concept of Potapov–Ginzburg transformation yields an interrelation

between the classesPJ(D) andSm×m(D) on the one-hand side and between the strong J-Potapov class

P ′
J (D) and the strong Schur class S′

m×m(D) of all f ∈ Sm×m(D) for which the matrix f (w) is strictly

contractive for each w ∈ D on the other-hand side (see [8, Proposition 3.4]).

The sequences (Aj)
∞
j=0 of Taylor coefficients of the matrix-valued functions which belong to the

class PJ,0(D) can be characterized in a clear way. In order to recall this characterization we introduce

some notations. Observe that, for eachm × m signature matrix J and every nonnegative integer n, the

complex (n + 1)m × (n + 1)m matrix

J[n] := diag(J, . . . , J) (1.1)

is an (n + 1)m × (n + 1)m signature matrix. If n ∈ N0, then a sequence (Aj)
n
j=0 of complex m × m

matrices is called a J-Potapov sequence (respectively, a strict J-Potapov sequence) if the block Toeplitz

matrix

Sn :=

⎛⎜⎜⎜⎝
A0 0m×m . . . 0m×m

A1 A0 . . . 0m×m

...
...

...
An An−1 . . . A0

⎞⎟⎟⎟⎠ (1.2)

is J[n]-contractive (respectively, strictly J[n]-contractive). For each n ∈ N0 wewill useP�
J,n (respectively,

P <
J,n ) to designate the set of all J-Potapov sequences (respectively, strict J-Potapov sequences) (Aj)

n
j=0.

From [9, Lemma 3.2 (respectively, Lemma 3.3)] it follows that if (Aj)
n
j=0 belongs to P�

J,n (respectively,

P <
J,n ), then (Aj)

k
j=0 ∈ P�

J,k (respectively, (Aj)
k
j=0 ∈ P <

J,k ) for each k ∈ N0,n. A sequence (Aj)
∞
j=0 of com-

plex m × m matrices is said to be a J-Potapov sequence (respectively, a strict J-Potapov sequence) if for

each n ∈ N0 the sequence (Aj)
n
j=0 is a J-Potapov sequence (respectively, a strict J-Potapov sequence).

We will write P�
J,∞ for the set of all J-Potapov sequences (Aj)

∞
j=0 and P <

J,∞ for the set of all strict

J-Potapov sequences (Aj)
∞
j=0.

Now we can formulate the Taylor series characterization of the class PJ,0(D).
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Theorem 1.1. Let J be an m × m signature matrix. Then:
(a) If f ∈ PJ,0(D) and if

f (w) =
∞∑
j=0

Ajw
j (1.3)

is theTaylor series representationof f in someneighborhoodof0, then (Aj)
∞
j=0 is a J-Potapov sequence.

(b) If (Aj)
∞
j=0 is a J-Potapov sequence, then there is a unique f ∈ PJ,0(D) such that (1.3) holds for all w

belonging to some neighborhood of 0.

A proof of Theorem 1.1 is given in [8, Theorem 6.2].

Considering the special case J = Im one can see immediately that Theorem 1.1 is a generalization of

a well-known characterization of the Taylor coefficients ofm × m Schur functions defined on D (see,

e.g., [2, Theorem 5.1.1]).

In [8] the following interpolation problem for functions belonging to the class PJ,0(D) is discussed:
Interpolation problem for Potapov functions (P): Let J be an m × m signature matrix, let n ∈ N0,

and let (Aj)
n
j=0 be a sequence of complex m × m matrices. Describe the set PJ,0[D, (Aj)

n
j=0] of all

matrix-valued functions f ∈ PJ,0(D) such that

f (j)(0)

j! = Aj

for each j ∈ N0,n where the notation f (j) stands for the jth derivative of f .

In [8, Theorem 7.2], it was proved that the set PJ,0

[
D, (Aj)

n
j=0

]
is nonempty if and only if (Aj)

n
j=0 is

a J-Potapov sequence.

We will now give some more notations that will be used throughout this paper. For each n ∈ N0,

let the matrix polynomials en,m : C → Cm×(n+1)m and εn,m : C → C(n+1)m×m be defined by

en,m(w) := (
Im,wIm, . . . ,w

nIm
)

and εn,m(w) :=
(
w̄ nIm, w̄

n−1Im, . . . , Im
)∗

. (1.4)

Let J be anm × m signature matrix, let κ ∈ N0 ∪ {+∞}, let (Aj)
κ
j=0 be a sequence of complexm × m

matrices, and let n ∈ N0,κ . Then we will continue to use the notation Sn given by (1.2). Further, we

designate

Pn,J := J[n] − SnJ[n]S∗
n and Qn,J := J[n] − S∗

n J[n]Sn. (1.5)

In the case n ∈ N1,κ we will use the block matrices

yn := (
A∗
1, A

∗
2, . . . , A

∗
n

)∗
and zn := (An, An−1, . . . , A1). (1.6)

If, additionally, s ∈ Nn+1,κ+1 (where, in the case κ = +∞, we set κ + 1 := +∞), then let

ys,n :=
(
A∗
s−n, A

∗
s−n+1, . . . , A

∗
s−1

)∗
and zs,n := (As−1, As−2, . . . , As−n). (1.7)

Moreover, for each n ∈ N0,κ we will work with the matrices

Mn+1,J :=
{
0m×m, if n = 0,

−znJ[n−1]S∗
n−1P

+
n−1,Jyn, if n ∈ N1,κ ,

(1.8)

Ln+1,J :=
{
J − A0JA

∗
0, if n = 0,

J − A0JA
∗
0 − znQ

+
n−1,J z

∗
n , if n ∈ N1,κ

(1.9)

and

Rn+1,J :=
{
J − A∗

0 JA0, if n = 0,

J − A∗
0 JA0 − y∗

nP
+
n−1,Jyn, if n ∈ N1,κ .

(1.10)
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Observe that if (Aj)
κ
j=0 is a J-Potapov sequence, then for each n ∈ N0,κ the matrices Ln+1,J and Rn+1,J

are both nonnegative Hermitian (see [9, Lemma 3.7]).

Letusnowrecall thenotionof amatrixball. Letp, q ∈ N. For eachC ∈ Cp×q, eachA ∈ Cp×p andeach

B ∈ Cq×q, the set of all X ∈ Cp×q which admit the representation X = C + AKBwith some contractive

(respectively, strictly contractive) complex p × q matrix K is called the matrix ball (respectively, open

matrix ball) with center C, left semi-radius A, and right semi-radius B and it will be denoted by K(C; A, B)
(respectively, K◦(C; A, B)).

The theory of matrix and operator balls was developed by Yu.L. Smuljan [12] (see also [2, Section

1.5]).

In [9, Theorem 3.9] there was shown the following result which enlightens the inner structure of

J-Potapov sequences.

Theorem 1.2. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n+1
j=0 be a sequence of complex

m × mmatrices. Then:
(a) The following statements are equivalent:

(i) (Aj)
n+1
j=0 is a J-Potapov sequence.

(ii) (Aj)
n
j=0 is a J-Potapov sequenceandAn+1 belongs to thematrixballK

(
Mn+1,J; √

Ln+1,J ,
√

Rn+1,J

)
.

(b) The following statements are equivalent:
(iii) (Aj)

n+1
j=0 is a strict J-Potapov sequence.

(iv) (Aj)
n
j=0 is a strict J-Potapov sequence and An+1 belongs to the open matrix ball K◦ (Mn+1,J;√

Ln+1,J ,
√

Rn+1,J

)
.

Considering the special choice J = Im, we see that Theorem 1.2 is a generalization of a well-known

result form × m Schur sequences (see, e.g., [2, Theorem 3.5.1]).

In [9], so-called J-central sequences are studied. A sequence (Aj)
∞
j=0 of complex m × m matrices

is said to be a J-central sequence if there exists some n ∈ N such that Ak = Mk,J for each integer k

with k � n. If n ∈ N, then we will say that (Aj)
∞
j=0 is a J-central sequence of order n if Ak = Mk,J for

each integer k with k � n. In this case the smallest positive integer n for which (Aj)
∞
j=0 is a J-central

sequence of order n is called the minimal order of the J-central sequence (Aj)
∞
j=0. Theorem 1.2 implies

that a J-central sequence (Aj)
∞
j=0 of order n is a J-Potapov sequence if and only if (Aj)

n−1
j=0 is a J-Potapov

sequence.

If n ∈ N0, and if (Aj)
n
j=0 is a sequence ofm × mmatrices then the sequence (Aj)

∞
j=0 defined recur-

sively by Ak := Mk,J for each k ∈ Nn+1,∞ is said to be the J-central sequence corresponding to (Aj)
n
j=0.

In view of Theorem 1.1, the concept of J-centrality can also be fomulated in terms of J-Potapov

functions. Let f ∈ PJ,0(D), and let (1.3) be the Taylor series representation of f in some neighborhood

of 0. Then f is called a J-central J-Potapov function if (Aj)
∞
j=0 is a J-central sequence. If n ∈ N, then f is

called a J-central J-Potapov function of order n (respectively, of minimal order n) if (Aj)
∞
j=0 is a J-central

J-Potapov sequence of order n (respectively, of minimal order n). Furthermore, if n ∈ N0, if some J-

Potapov sequence (Aj)
n
j=0 is given, and if (Aj)

∞
j=0 is the J-central J-Potapov sequence corresponding to

(Aj)
n
j=0, then the (uniquely determined) function f ∈ PJ,0(D) satisfying (1.3) in some neighborhood of

0 is said to be the J-central J-Potapov function corresponding to (Aj)
n
j=0.

2. Representations of J-central J-Potapov functions as left and right quotients of matrix

polynomials

In this section, we will derive explicit representations of J-central J-Potapov functions correspond-

ing to some J-Potapov sequence (Aj)
n
j=0 where n is a nonnegative integer. In the following remark the

(simple) case n = 0 is treated.
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Remark 2.1. Let J be an m × m signature matrix, and let (Aj)
0
j=0 be a J-Potapov sequence. Then it is

readily checked that the constant function (defined on D) with value A0 is the J-central J-Potapov

function corresponding to (Aj)
0
j=0.

Now we turn our attention to the case n ∈ N. First we make some easy observations on rational

matrix-valued functions and their series of Taylor coefficients.

Remark 2.2. Let n, p, q ∈ N, let (Bj)
n
j=0 be a sequence of complex p × q matrices, and let (Cj)

n
j=1 be

a sequence of complex q × qmatrices. Let the matrix polynomials g : C → Cp×q and h : C → Cq×q

be defined by

g(w) :=
n∑

k=0

Bkw
k and h(w) := Iq +

n∑
k=1

Ckw
k. (2.1)

Then the p × qmatrix-valued function f := gh−1 is meromorphic in C and holomorphic at the origin.

Let f (w) = ∑∞
j=0 Ajw

j be theTaylor series representationof f in someneighborhoodof 0. ThenA0 = B0

holds. Moreover, it is readily checked that for each k ∈ N1,n the equation Ak = Bk −∑k
j=1 Ak−jCj is

fulfilled and that for each k ∈ Nn+1,∞ the recursion formula

Ak = −
n∑

j=1

Ak−jCj (2.2)

holds true.

Lemma 2.3. Let n, p, q ∈ N, and let (Cj)
n
j=1 be a sequence of complex q × q matrices. Let (Aj)

∞
j=0 be a

sequence of complex p × qmatrices such that for each k ∈ Nn+1,∞ the recursion formula (2.2) is satisfied.
Let B0 := A0, and for each k ∈ N1,n let

Bk := Ak +
k∑

j=1

Ak−jCj. (2.3)

Let the matrix polynomials g : C → Cp×q and h : C → Cq×q be defined by (2.1), and let f := gh−1.
Then f admits the Taylor series representation f (w) = ∑∞

j=0 Ajw
j in some neighborhood of 0. Moreover,

the matrix polynomials g and h can be represented via

g(w) = A0 + wen−1,p(w)(yn + Sn−1Vn) (2.4)

and

h(w) = Iq + wen−1,q(w)Vn (2.5)

for each w ∈ C where Vn := (
C∗
1 , C

∗
2 , . . . , C

∗
n

)∗
and where yn and Sn−1 are given by (1.6) and (1.2).

Proof. It is readily checked that Eqs. (2.4) and (2.5) hold true. Furthermore, f is a (well-defined) p × q

matrix-valued functionwhich ismeromorphic inC andholomorphic at 0. Let f (w) = ∑∞
j=0 Ãjw

j be the

Taylor series representation of f in some neighborhood of 0. Then Remark 2.2 implies Ã0 = B0 = A0.

Hence there is a positive integer s such that Ãk = Ak holds for each k ∈ N0,s−1. If s� n, then Remark

2.2 and (2.3) yield Ãs = Bs −∑s
j=1 Ãs−jCj = As. Moreover, if s� n + 1, then fromRemark 2.2 and (2.2)

we get Ãs = −∑n
j=1 Ãs−jCj = As. Consequently, Ãk = Ak is true for each k ∈ N0. Thus, the proof is

complete. �

In [9, Theorem 5.8] certain recursion formulas for the elements of a J-central J-Potapov sequence

(Aj)
∞
j=0 were derived. Our next considerations are aimed at obtaining some slight generalizations of

these formulas.
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Lemma 2.4. Let J be anm × msignaturematrix, let n ∈ N, let k ∈ Nn+1,∞, and let (Aj)
k−1
j=0 be a J-Potapov

sequence. Then the following statements hold:
(a) Pn−1,JP

+
n−1,JSn−1J[n−1]z∗k,n = Sn−1J[n−1]z∗k,n and Qn−1,JQ

+
n−1,J z

∗
k,n = z∗k,n.

(b) Qn−1,JQ
+
n−1,JS

∗
n−1J[n−1]yk,n = S∗

n−1J[n−1]yk,n and Pn−1,JP
+
n−1,Jyk,n = yk,n.

Proof. Let

Bkn :=
(
z∗n+1,n, z

∗
n+2,n, . . . , z

∗
k,n

)∗
. (2.6)

Then using the block partitions

Sk−1 =
(
Sn−1 0

Bkn Sk−n−1

)
and J[k−1] = diag(J[n−1], J[k−n−1]) we get

Pk−1,J =
(
Pn−1,J −Sn−1J[n−1]B∗

kn∗ ∗
)

. (2.7)

Since (Aj)
k−1
j=0 is a J-Potapov sequence, the matrix Sk−1 is J[k−1]-contractive. Hence S∗

k−1 is J[k−1]-
contractive as well (see, e.g., [2, Theorem 1.3.3]), i.e., the matrix Pk−1,J is nonnegative Hermitian. Thus,

from (2.6), (2.7), and a well-known characterization of nonnegative Hermitian block matrices (see,

e.g., [2, Lemma 1.1.9]) we obtain

R
(
Sn−1J[n−1]z∗k,n

)
⊆ R

(
Sn−1J[n−1]B∗

kn

) ⊆ R(Pn−1,J). (2.8)

Hence the first equation stated in (a) holds true. According to [9, Lemma 3.5], the inclusions in (2.8)

imply R
(
z∗k,n

)
⊆ R(Qn−1,J). Thus, the second equation stated in (a) is satisfied as well. Part (b) can be

shown analogously to part (a). �

In the sequel, we will use the following notations. Let J be an m × m signature matrix, let n ∈ N,

and let (Aj)
n
j=0 be a J-Potapov sequence. Then let

Yn,J :=
{
V ∈ Cnm×m : Qn−1,JV = S∗

n−1J[n−1]yn
}

(2.9)

and

Zn,J :=
{
W ∈ Cm×nm : WPn−1,J = znJ[n−1]S∗

n−1

}
. (2.10)

Remark 2.5. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence.

Furthermore, let

V�
n := Q

+
n−1,JS

∗
n−1J[n−1]yn and W�

n := znJ[n−1]S∗
n−1P

+
n−1,J . (2.11)

Then Lemma 2.4 yields in particular V�
n ∈ Yn,J andW�

n ∈ Zn,J .

The recursion formulas given in the following proposition will play a key role in our investigations.

Proposition 2.6. Let n ∈ N, and let (Aj)
∞
j=0 be a J-Potapov sequence which is J-central of order n + 1.

Furthermore, let Vn ∈ Yn,J and Wn ∈ Zn,J . For each integer k with k � n + 1, then

Ak = −zk,nVn and Ak = −Wnyk,n. (2.12)

Proof. Let V�
n be given by (2.11). Then, according to [9, Theorem 5.8], we have Ak = −zk,nV

�
n for

each k ∈ Nn+1,∞. Thus, Lemma 2.4 yields −zk,nVn = −zk,nQ
+
n−1,JQn−1,JVn = −zk,nV

�
n = Ak for each

k ∈ Nn+1,∞. Analogously, the second equation stated in (2.12) can be verified. �
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The next two theorems contain the desired representations of J-central J-Potapov functions as quo-

tients ofmatrix polynomials. These quotient representations are a generalization of the corresponding

result form × m Schur functions, which was proved in [6].

Theorem 2.7. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

Denote fc,n the J-central J-Potapov function corresponding to (Aj)
n
j=0. If n ∈ N, then let Vn ∈ Yn,J . Let the

matrix polynomials πn,J : C → Cm×m and ρn,J : C → Cm×m be given by

πn,J(ζ ) :=
{
A0, if n = 0,

A0 + ζ en−1,m(ζ )(yn + Sn−1Vn), if n ∈ N
(2.13)

and

ρn,J(ζ ) :=
{
Im, if n = 0,

Im + ζ en−1,m(ζ )Vn, if n ∈ N.
(2.14)

Then

fc,n = πn,J,D ρ−1
n,J,D, (2.15)

where πn,J,D (respectively, ρn,J,D) is the restriction of πn,J (respectively, ρn,J) onto D.

Proof. In the case n = 0 the assertion follows immediately from Remark 2.1. Now suppose n ∈ N. Let

fn := πn,Jρ
−1
n,J . Obviously, fn is meromorphic in C and holomorphic at 0. Let (Aj)

∞
j=0 be the J-central

sequence corresponding to (Aj)
n
j=0. In view of Theorem 1.2, (Aj)

∞
j=0 is a J-Potapov sequence, which

is J-central of order n + 1. Hence Proposition 2.6 implies Ak = −zk,nVn for each k ∈ Nn+1,∞. Thus,

application of Lemma 2.3 yields that fn admits the Taylor series representation fn(w) = ∑∞
j=0 Ajw

j

in some neighborhood of 0. Consequently, fc,n is the restriction of fn onto D ∩ Hfn . This implies

(2.15). �

The following theorem can be shown similarly.

Theorem 2.8. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

Denote fc,n the J-central J-Potapov function corresponding to (Aj)
n
j=0. If n ∈ N, then let Wn ∈ Zn,J . Let the

matrix polynomials σn,J : C → Cm×m and τn,J : C → Cm×m be given by

σn,J(ζ ) :=
{
A0, if n = 0,

(WnSn−1 + zn)ζ εn−1,m(ζ ) + A0, if n ∈ N
(2.16)

and

τn,J(ζ ) :=
{
Im, if n = 0,

Wnζεn−1,m(ζ ) + Im, if n ∈ N.
(2.17)

Then

fc,n = τ−1
n,J,D σn,J,D , (2.18)

where σn,J,D (respectively, τn,J,D) is the restriction of σn,J (respectively, τn,J) onto D.

At this point it seems to be useful to present some more preliminaries on the matrices Qn,J and Pn,J
given by (1.5). Let J be anm × m signaturematrix, let n ∈ N, and let us consider an arbitrary sequence

(Aj)
n
j=0 of complexm × m matrices. Then from the block representations

Sn =
(
Sn−1 0

zn A0

)
and Sn =

(
A0 0

yn Sn−1

)
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of Sn we see that Qn,J and Pn,J can be represented via

Qn,J =
(
Qn−1,J − z∗n Jzn −z∗n JA0−A∗

0 Jzn R1,J

)
, (2.19)

Qn,J =
(
R1,J − y∗

nJ[n−1]yn −y∗
nJ[n−1]Sn−1−S∗

n−1J[n−1]yn Qn−1,J

)
, (2.20)

Pn,J =
(

Pn−1,J −Sn−1J[n−1]z∗n−znJ[n−1]S∗
n−1 L1,J − znJ[n−1]z∗n

)
(2.21)

and

Pn,J =
(

L1,J −A0Jy
∗
n−ynJA

∗
0 Pn−1,J − ynJy

∗
n

)
. (2.22)

For each s ∈ N and each B ∈ Cnm×s, then (2.19) and (2.20) yield(
B

0m×s

)∗
Qn,J

(
B

0m×s

)
= B∗Qn−1,JB − B∗z∗n JznB (2.23)

and (
0m×s

B

)∗
Qn,J

(
0m×s

B

)
= B∗Qn−1,JB. (2.24)

Similarly, for each s ∈ N and each C ∈ Cnm×s, from (2.21) and (2.22) we get(
C

0m×s

)∗
Pn,J

(
C

0m×s

)
= C∗Pn−1,JC (2.25)

and (
0m×s

C

)∗
Pn,J

(
0m×s

C

)
= C∗Pn−1,JC − C∗ynJy∗

nC. (2.26)

Lemma 2.9. Let J be anm × m signaturematrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Then:

(a) For each Vn ∈ Yn,J ,

Qn,J

(
Im
Vn

)
=
(
Rn+1,J

0nm×m

)
.

(b) For each Wn ∈ Zn,J ,

(Wn, Im)Pn,J = (0m×nm, Ln+1,J).

Proof. According to [9, Lemma 3.7], we have

Rn+1,J = R1,J − y∗
nJ[n−1]yn − y∗

nJ[n−1]Sn−1Q
+
n−1,JS

∗
n−1J[n−1]yn. (2.27)

Moreover, part (b) of Lemma 2.4 implies

Qn−1,JQ
+
n−1,JS

∗
n−1J[n−1]yn = S∗

n−1J[n−1]yn. (2.28)

Now let Vn ∈ Yn,J . Then

Qn−1,JVn = S∗
n−1J[n−1]yn (2.29)

holds. From (2.28) and (2.29) we get

y∗
nJ[n−1]Sn−1Vn = y∗

nJ[n−1]Sn−1Q
+
n−1,JQn−1,JVn

= y∗
nJ[n−1]Sn−1Q

+
n−1,JS

∗
n−1J[n−1]yn. (2.30)
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Thus, using (2.20), (2.30), (2.27), and (2.29) we obtain

Qn,J

(
Im
Vn

)
=
(
R1,J − y∗

nJ[n−1]yn − y∗
nJ[n−1]Sn−1Vn−S∗

n−1J[n−1]yn + Qn−1,JVn

)
=
(
Rn+1,J

0nm×m

)
.

Hence part (a) is verified. Part (b) can be checked analogously. �

Remark 2.10. Let J be anm × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence.

Further, let Vn ∈ Yn,J , letWn ∈ Zn,J , and let

V#
n :=

(
Im
Vn

)
and W#

n := (Wn, Im). (2.31)

Then it is readily checked that the matrix polynomials πn,J , ρn,J , σn,J , and τn,J given by (2.13), (2.14),

(2.16), and (2.17), respectively, satisfy the equations

πn,J = en,mSnV
#
n , ρn,J = en,mV

#
n , σn,J = W#

n Snεn,m, and τn,J = W#
n εn,m.

In the sequel, we will use the following notion. Let p, q ∈ N, and let b be a p × q matrix polynomial,

i.e., there are an n ∈ N0 and a matrix B ∈ C(n+1)p×q such that b(ζ ) = en,p(ζ )B holds for each ζ ∈ C.

Then the reciprocal matrix polynomial b̃[n] of b with respect to the unit circle T and the formal degree n is

given by b̃[n](ζ ) := B∗εn,p(ζ ) for each ζ ∈ C.

Let n ∈ N0, let J be an m × m signature matrix, let (Aj)
n
j=0 be a J-Potapov sequence, and let the

matrix polynomials πn,J , ρn,J , σn,J , and τn,J be introduced as in Theorems 2.7 and 2.8. Then Theorems

2.7 and 2.8 imply immediately

τn,Jπn,J = σn,Jρn,J and π̃
[n]
n,J τ̃

[n]
n,J = ρ̃

[n]
n,J σ̃

[n]
n,J . (2.32)

The following result contains further important facts on the interplay between these matrix polyno-

mials. In the special case J = Im it was shown in [7]. We will follow the proof given there.

Proposition 2.11. Let n ∈ N0, let J be anm × msignaturematrix, and let (Aj)
n
j=0 be a J-Potapov sequence.

If n� 1, then let Vn ∈ Yn,J and Wn ∈ Zn,J . Let the matrix polynomials πn,J , ρn,J , σn,J , and τn,J be given by

(2.13), (2.14), (2.16), and (2.17), respectively. Then:
(a) For each z ∈ T the equations

(ρn,J(z))
∗Jρn,J(z) − (πn,J(z))

∗Jπn,J(z) = Rn+1,J (2.33)

and

τn,J(z)J(τn,J(z))
∗ − σn,J(z)J(σn,J(z))

∗ = Ln+1,J (2.34)

hold true.
(b) For each w ∈ C the identities

ρ̃
[n]
n,J (w)Jρn,J(w) − π̃

[n]
n,J (w)Jπn,J(w) = wnRn+1,J (2.35)

and

τn,J(w)Jτ̃
[n]
n,J (w) − σn,J(w)Jσ̃

[n]
n,J (w) = wnLn+1,J (2.36)

are fulfilled.
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Proof. The case n = 0 is trivial. Now suppose n� 1. For each w ∈ C, let

Fn(w) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

wIm 0 0 · · · 0 0

w2Im wIm 0 · · · 0 0

w3Im w2Im wIm
. . .

...
...

...
...

...
. . . 0 0

wnIm wn−1Im wn−2Im · · · wIm 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C(n+1)m×(n+1)m. (2.37)

Then it is readily checked that for each w ∈ C \ {0} the identity(
en,m

(
1

w̄

))∗
Jen,m(w) = J[n]Fn

(
1

w

)
+ J[n] + (Fn(w̄))∗J[n] (2.38)

holds true. Moreover, an easy calculation (see, e.g., [2, Lemma 4.2.1]) yields Fn(w)Sn = SnFn(w) for

each w ∈ C. Thus, from (2.38) we get

S∗
n

(
en,m

(
1

w̄

))∗
Jen,m(w)Sn = S∗

n J[n]SnFn
(
1

w

)
+ S∗

n J[n]Sn + (Fn(w̄))∗S∗
n J[n]Sn

(2.39)

for each w ∈ C \ {0}. Now let z ∈ T. Then from (2.38), (2.39), and (1.5) the equation

(en,m(z))∗Jen,m(z) − S∗
n(en,m(z))∗Jen,m(z)Sn = Qn,JFn(z) + Qn,J + (Fn(z̄))

∗Qn,J

(2.40)

follows. Taking into account Lemma 2.9 and (2.37), we infer(
V#
n

)∗
Qn,JFn(z̄)V

#
n = 0m×m (2.41)

and (
V#
n

)∗
Qn,JV

#
n = Rn+1,J (2.42)

where V#
n is given by (2.31). In view of Remark 2.10, (2.40), (2.41), and (2.42) we obtain

(ρn,J(z))
∗Jρn,J(z) − (πn,J(z))

∗Jπn,J(z)

=
(
V#
n

)∗ (
(en,m(z))∗Jen,m(z) − S∗

n(en,m(z)∗Jen,m(z)Sn
)
V#
n

=
(
V#
n

)∗
Qn,JFn(z̄)V

#
n +

(
V#
n

)∗
Qn,JV

#
n +

(
V#
n

)∗
(Fn(z̄))

∗Qn,JV
#
n = Rn+1,J ,

i.e., (2.33) holds. Eq. (2.34) can be verified analogously. Thus part (a) is proved. Furthermore, it is readily

checked (see, e.g., [2, Lemma 1.2.2]) that the identities

ρ̃
[n]
n,J (z) = zn(ρn,J(z))

∗, π̃
[n]
n,J (z) = zn(πn,J(z))

∗,

τ̃
[n]
n,J (z) = zn(τn,J(z))

∗ and σ̃
[n]
n,J (z) = zn(σn,J(z))

∗

hold. From part (a) it follows therefore that the equations stated in (b) are valid forw = z. The Identity

Theorem for holomorphic functions yields that these equations are actually fulfilled for each w ∈ C.

�

In view of Theorems 2.7 and 2.8, it is desirable to construct such quotient representations of a

J-central J-Potapov function f where the zeros of the determinant of the “denominator function” are

exactly the poles of f . Our next goal is to derive such representations. For the special case J = Im, it
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was shown in [4] that there is a quotient representation of a centralm × m Schur function where the

determinant of the “denominator function” vanishes nowhere in D. The proof given there employs

an idea which was used by Ellis and Gohberg [3] for matrix polynomials constructed from positive

Hermitian block Toeplitz matrices. Our approach will be based on a slight modification of the method

applied in [4].

Lemma 2.12. Let n, p, q ∈ N, let A ∈ Cp×q, let V ∈ Cnp×q, and let the matrix polynomial g : C → Cp×q

be given by g(w) := A + wen−1,p(w)V . Let ζ ∈ C and let x ∈ N (g(ζ )). Then there exists a matrix B ∈
Cnp×q such that(

A

V

)
x =

(
0p×q

B

)
x − ζ

(
B

0p×q

)
x. (2.43)

Proof. Let T1,p := 0p×p, and in the case n ∈ N2,∞ let

Tn,p :=
(
0(n−1)p×p I(n−1)p

0p×p 0p×(n−1)p

)
. (2.44)

Then it is readily checked that

[wen−1,p(w) − ζ en−1,p(ζ )](I − ζ Tn,p) = (w − ζ )en−1,p(w)

holds for each w ∈ C. Let B := (
I − ζ Tn,p

)−1
V . Then, for each w ∈ C, we get

g(w)x = g(w)x − g(ζ )x = [wen−1,p(w) − ζ en−1,p(ζ )]Vx = (w − ζ )en−1,p(w)Bx.

Comparing coefficients of corresponding powers of w we obtain (2.43). �

Lemma 2.13. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Let

Vn ∈ Yn,J , and let ρn,J : C → Cm×m be defined by (2.14). Let ζ ∈ C, and let x ∈ N (ρn,J(ζ )). Then there

exists a matrix B ∈ Cnm×m such that the equations(
Im
Vn

)
x =

(
0m×m

B

)
x − ζ

(
B

0m×m

)
x (2.45)

and

(|ζ |2 − 1)x∗B∗Qn−1,JBx = x∗Rn+1,Jx + |ζ |2x∗B∗z∗n JznBx (2.46)

are satisfied.

Proof. According toLemma2.12, thereexists aB ∈ Cnm×m such that (2.45)holds. Further, usingLemma

2.9, Rn+1,J = R∗
n+1,J , and (2.45) we get

ζ x∗
(
Im
Vn

)∗
Qn,J

(
B

0m×m

)
x = ζ x∗(Rn+1,J , 0m×nm)

(
B

0m×m

)
x

= x∗(Rn+1,J , 0m×nm)

[(
0m×m

B

)
x −

(
Im
Vn

)
x

]
= −x∗Rn+1,Jx. (2.47)

From (2.24), (2.45), Lemma 2.9, (2.47), and (2.23) we then infer

x∗B∗Qn−1,JBx

= x∗
(
0m×m

B

)∗
Qn,J

(
0m×m

B

)
x

=
[(

Im
Vn

)
x + ζ

(
B

0m×m

)
x

]∗
Qn,J

[(
Im
Vn

)
x + ζ

(
B

0m×m

)
x

]
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= x∗Rn+1,Jx − x∗Rn+1,Jx − (
x∗Rn+1,Jx

)∗ + |ζ |2x∗ (B∗Qn−1,JB − B∗z∗n JznB
)
x

= |ζ |2x∗B∗Qn−1,JBx − |ζ |2x∗B∗z∗n JznBx − x∗Rn+1,Jx

and consequently (2.46). �

Lemma 2.14. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Let

Vn ∈ Yn,J , and let πn,J : C → Cm×m be defined by (2.13). Let ζ ∈ C, and let x ∈ N (πn,J(ζ )). Then there

exists a matrix C ∈ Cnm×m such that

Sn

(
Im
Vn

)
x =

(
0m×m

C

)
x − ζ

(
C

0m×m

)
x. (2.48)

Proof. Use

Sn

(
Im
Vn

)
=
(
A0 0

yn Sn−1

)(
Im
Vn

)
=
(

A0

yn + Sn−1Vn

)
and Lemma 2.12. �

Lemma 2.15. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Let

Vn ∈ Yn,J , and letρn,J : C → Cm×m andπn,J : C → Cm×m be defined by (2.14) and (2.13). Let ζ ∈ C, and

let x ∈ N (ρn,J(ζ )) ∩ N (πn,J(ζ )). Then there exists a matrix B ∈ Cnm×m such that the equations (2.45)

and

(|ζ |2 − 1)x∗B∗Qn−1,JBx = x∗Rn+1,Jx (2.49)

are satisfied.

Proof. The case x = 0m×1 is trivial. Suppose x /= 0m×1. According to Lemmas 2.13 and 2.14, there exist

complex nm × mmatrices B and C such that (2.45), (2.46), and (2.48) are satisfied. Let Tn+1,m be given

by (2.44). Then using (2.48) and (2.45) we obtain(
T∗
n+1,m − ζ I

) ( C

0m×m

)
x =

(
0m×m

C

)
x − ζ

(
C

0m×m

)
x = Sn

(
Im
Vn

)
x

= Sn

(
0m×m

B

)
x − ζ Sn

(
B

0m×m

)
x

=
(
A0 0

yn Sn−1

)(
0m×m

B

)
x − ζ

(
Sn−1 0

zn A0

)(
B

0m×m

)
x

=
(
0m×m

Sn−1B

)
x − ζ

(
Sn−1B

znB

)
x =

(
T∗
n+1,m − ζ I

) (Sn−1B

znB

)
x.

(2.50)

Because of N (ρn,J(0)) = {0m×1} and x /= 0m×1 we have ζ /= 0. Hence det
(
T∗
n+1,m − ζ I

)
/= 0 holds.

Thus, (2.50) implies(
C

0m×m

)
x =

(
Sn−1B

znB

)
x.

In particular, znBx = 0 is valid. Taking into account (2.46) we get (2.49). �

In a similar way one can check that the following lemma is true.

Lemma 2.16. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Let

Wn ∈ Zn,J ,and let τn,J : C → Cm×m andσn,J : C → Cm×m bedefinedby (2.17)and (2.16). Let ζ ∈ C,and

let x ∈ N
([τn,J(ζ )]∗) ∩ N

([σn,J(ζ )]∗) . Then there exists a matrix E ∈ Cm×nm such that the equations
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x∗(Wn, Im) = x∗(E, 0m×m) − ζ x∗(0m×m, E)

and

(|ζ |2 − 1)x∗EPn−1,JE
∗x = x∗Ln+1,Jx

are satisfied.

Lemma 2.17. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

If n ∈ N, then let Vn := Q
+
n−1,JS

∗
n−1J[n−1]yn. Let ρn,J : C → Cm×m and πn,J : C → Cm×m be defined by

(2.14) and (2.13). Then

N (ρn,J(ζ )) ∩ N (πn,J(ζ )) = {0m×1} (2.51)

holds for each ζ ∈ D. If (Aj)
n
j=0 is moreover a strict J-Potapov sequence, then (2.51) is valid for each

ζ ∈ D ∪ T.

Proof. The case n = 0 is trivial. Let n ∈ N, let ζ ∈ C, and let x ∈ N (ρn,J(ζ )) ∩ N (πn,J(ζ )). Then

Remark 2.5 and Lemma 2.15 imply that there exists a matrix B ∈ Cnm×m such that (2.45) and (2.49)

are fulfilled. According to [9, Lemma 3.7], the matrix Rn+1,J is nonnegative Hermitian. Hence (2.49)

yields

(|ζ |2 − 1)x∗B∗Qn−1,JBx � 0. (2.52)

Now suppose ζ ∈ D. Since Qn−1,J is nonnegative Hermitian, from (2.52) we get x∗B∗Qn−1,JBx = 0 and

therefore x∗B∗Q+
n−1,J =x∗B∗√Qn−1,J

√
Qn−1,J

+
Q

+
n−1,J = 01×nm. Thus, using (2.45) we obtain

0 = x∗B∗Q+
n−1,JS

∗
n−1J[n−1]ynx = x∗B∗Vnx = (

01×m, x
∗B∗) (Im

Vn

)
x

= (
01×m, x

∗B∗) · [(0m×m

B

)
x − ζ

(
B

0m×m

)
x

]
= x∗B∗Bx − ζ

(
0m×1

Bx

)∗ (
Bx

0m×1

)
.

Hence

x∗B∗Bx = |x∗B∗Bx| � |ζ |
√(

0m×1

Bx

)∗ (
0m×1

Bx

)√(
Bx

0m×1

)∗ (
Bx

0m×1

)
= |ζ |x∗B∗Bx

and therefore x∗B∗Bx = 0, i.e., Bx = 0 holds. Taking into account (2.45), we get x = 0m×1. Thus, (2.51)

is verified for each ζ ∈ D. Now suppose that (Aj)
n
j=0 is a strict J-Potapov sequence, and let ζ ∈ T.

Then from [9, Lemmas 3.3 and 3.7] we know that Rn+1,J is positive Hermitian. Hence (2.49) yields

immediately x = 0m×1, i.e., (2.51) holds. Thus, the proof is complete. �

The following lemma can be shown analogously.

Lemma 2.18. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

If n ∈ N, then let Wn := znJ[n−1]S∗
n−1P

+
n−1,J . Let τn,J : C → Cm×m and σn,J : C → Cm×m be defined by

(2.17) and (2.16). Then

N
([τn,J(ζ )]∗) ∩ N

([σn,J(ζ )]∗) = {0m×1} (2.53)

holds for each ζ ∈ D. If (Aj)
n
j=0 is moreover a strict J-Potapov sequence, then (2.53) is valid for each

ζ ∈ D ∪ T.
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Now let a positive integer n and a J-Potapov sequence (Aj)
n
j=0 be given, and let fc,n be the J-

central J-Potapov function corresponding to (Aj)
n
j=0. According to Remark 2.5, the matrix V�

n :=
Q

+
n−1,JS

∗
n−1J[n−1]yn belongs to Yn,J . Now we will see that the particular choice Vn := V�

n in Theorem

2.7 ensures that, in the quotient representation (2.15) of fc,n, the zeros of the determinant of the

“denominator function” ρn,J,D are exactly the poles of fc,n.

Proposition 2.19. Let J be anm × msignaturematrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

Denote fc,n the J-central J-Potapov function corresponding to (Aj)
n
j=0. If n ∈ N, then let Vn :=

Q
+
n−1,JS

∗
n−1J[n−1]yn. Letρn,J : C → Cm×m be defined by (2.14). ThenHfc,n = {ζ ∈ D : det ρn,J(ζ ) /= 0}.

Proof. From Remark 2.5 we know that, in the case n ∈ N, Vn ∈ Yn,J holds true. Thus, Theorem 2.7

yields immediately {ζ ∈ D : det ρn,J(ζ ) /= 0} ⊆ Hfc,n . Now we consider an arbitrary ζ ∈ Hfc,n . Let

πn,J : C → Cm×m be given by (2.13). Then Theorem 2.7 implies πn,J(ζ ) = fc,n(ζ )ρn,J(ζ ). In particular,

N (ρn,J(ζ )) ⊆ N (πn,J(ζ )) holds. Taking into account Lemma 2.17 we get N (ρn,J(ζ )) = {0m×1}, i.e.,
det ρn,J(ζ ) /= 0. �

The following result can be proved in an analogous way.

Proposition 2.20. Let J be anm × msignaturematrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

Denote fc,n the J-central J-Potapov function corresponding to (Aj)
n
j=0. If n ∈ N, then let Wn :=

znJ[n−1]S∗
n−1P

+
n−1,J . Let τn,J : C → Cm×m be defined by (2.17). Then Hfc,n = {ζ ∈ D : det τn,J(ζ ) /= 0}.

3. Recursion formulas

Let J be anm × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence. Denote fc,n

the J-central J-Potapov function corresponding to (Aj)
n
j=0. Thegoal of this section is toderive a recursive

procedure for the construction of quotient representations of fc,n of the types stated in Theorems 2.7

and 2.8. The results in this section generalize the corresponding results for m × m Schur sequences,

which were obtained in [6].

In the sequel, we will use the following notation. If n ∈ N0 and if (Aj)
n+1
j=0 is a J-Potapov sequence,

then we will work with the sets

Ln+1,J :=
{
t ∈ Cm×m : Ln+1,J t = An+1 − Mn+1,J

}
(3.1)

and

Rn+1,J :=
{
u ∈ Cm×m : uRn+1,J = An+1 − Mn+1,J

}
. (3.2)

Remark 3.1. Let J be anm × m signature matrix, let n ∈ N0, and let (Aj)
n+1
j=0 be a J-Potapov sequence.

Let tn+1 := L
+
n+1,J(An+1 − Mn+1,J) and un+1 := (An+1 − Mn+1,J)R

+
n+1,J . In view of Theorem 1.2, there

is a contractive m × m matrix K such that An+1 − Mn+1,J = √
Ln+1,JK

√
Rn+1,J . Consequently, tn+1 ∈

Ln+1,J and un+1 ∈ Rn+1,J .

Remark 3.2. Let J be anm × m signaturematrix, and let (Aj)
1
j=0 be a J-Potapov sequence. Let t1 ∈ L1,J

and u1 ∈ R1,J . Further, let

V1 := JA∗
0t1 and W1 := u1A

∗
0 J. (3.3)

Then it is readily checked that V1 ∈ Y1,J andW1 ∈ Z1,J hold.
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Lemma 3.3. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n+1
j=0 be a J-Potapov sequence.

Further, let Vn ∈ Yn,J , let Wn ∈ Zn,J , and let V#
n and W#

n be defined by (2.31). Then:
(a) For each tn+1 ∈ Ln+1,J the matrix

Vn+1 :=
(

Vn

0m×m

)
+ J[n]

(
W#

n Sn

)∗
tn+1 (3.4)

belongs to Yn+1,J and the matrix

V#
n+1 :=

(
Im

Vn+1

)
(3.5)

satisfies the equations

V#
n+1 =

(
V#
n

0m×m

)
+
(

0m×m

J[n]
(
W#

n Sn

)∗
tn+1

)
(3.6)

and

Sn+1V
#
n+1 =

(
SnV

#
n

0m×m

)
+
(

0m×m

J[n]
(
W#

n

)∗
tn+1

)
. (3.7)

(b) For each un+1 ∈ Rn+1,J the matrix

Wn+1 := (0m×m,Wn) + un+1

(
SnV

#
n

)∗
J[n] (3.8)

belongs to Zn+1,J and the matrix

W#
n+1 := (Wn+1, Im) (3.9)

satisfies the equations

W#
n+1 =

(
0m×m,W

#
n

)
+
(
un+1

(
SnV

#
n

)∗
J[n], 0m×m

)
(3.10)

and

W#
n+1Sn+1 =

(
0m×m,W

#
n Sn

)
+
(
un+1

(
V#
n

)∗
J[n], 0m×m

)
. (3.11)

Proof. Let tn+1 ∈ Ln+1,J . Denote

Gn+1 := (
Qn−1,J − z∗n Jzn

) [
Vn + J[n−1]

(
S∗
n−1W

∗
n + z∗n

)
tn+1

]
− z∗n JA0JA

∗
0tn+1

and

Hn+1 := −A∗
0 Jzn

[
Vn + J[n−1]

(
S∗
n−1W

∗
n + z∗n

)
tn+1

]
+ R1,J JA

∗
0tn+1.

Then, in view of

Vn+1 =
(

Vn

0m×m

)
+ J[n]

(
Sn−1 0

zn A0

)∗ (
W∗

n
Im

)
tn+1

=
(
Vn + J[n−1]

(
S∗
n−1W

∗
n + z∗n

)
tn+1

JA∗
0tn+1

)
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and (2.19), we get

Qn,JVn+1 =
(
Gn+1

Hn+1

)
. (3.12)

According to [9, Lemma 3.7], the matrix Mn+1,J admits the representation Mn+1,J =
−znQ

+
n−1,JS

∗
n−1J[n−1]yn. Thus, using Lemma 2.4 and Vn ∈ Yn,J we obtain

znVn = znQ
+
n−1,JQn−1,JVn = −Mn+1,J . (3.13)

Because ofWn ∈ Zn,J we have

Qn−1,J J[n−1]
(
S∗
n−1W

∗
n + z∗n

)
= S∗

n−1J[n−1]Pn−1,JW
∗
n + Qn−1,J J[n−1]z∗n

=
(
S∗
n−1J[n−1]Sn−1 + Qn−1,J

)
J[n−1]z∗n = z∗n . (3.14)

Thus, Lemma 2.4 implies

znJ[n−1]
(
S∗
n−1W

∗
n + z∗n

)
= znQ

+
n−1,JQn−1,J J[n−1]

(
S∗
n−1W

∗
n + z∗n

)
= znQ

+
n−1,J z

∗
n .

(3.15)

Using Vn ∈ Yn,J , (3.13), (3.14), (3.15), (1.9), and tn+1 ∈ Ln+1,J yields

Gn+1 = S∗
n−1J[n−1]yn + z∗n JMn+1,J +

(
z∗n − z∗n JznQ+

n−1,J z
∗
n

)
tn+1 − z∗n JA0JA

∗
0tn+1

= S∗
n−1J[n−1]yn + z∗n JMn+1,J + z∗n JLn+1,J tn+1

= S∗
n−1J[n−1]yn + z∗n JAn+1, (3.16)

and in view of (3.13), (3.15), R1,J JA
∗
0 = A∗

0 JL1,J , (1.9), and tn+1 ∈ Ln+1,J we get

Hn+1 = A∗
0 JMn+1,J − A∗

0 JznQ
+
n−1,J z

∗
n tn+1 + R1,J JA

∗
0tn+1

= A∗
0 J(Mn+1,J + Ln+1,J tn+1) = A∗

0 JAn+1. (3.17)

Applying (3.12), (3.16), and (3.17) we obtain

Qn,JVn+1 =
(
S∗
n−1 z∗n
0 A∗

0

)
diag(J[n−1], J)

(
yn

An+1

)
= S∗

n J[n]yn+1,

i.e., Vn+1 belongs to Yn+1,J . Further, (3.6) follows immediately from (3.4). Moreover, (3.6) and (3.13)

yield

Sn+1V
#
n+1 =

(
Sn 0

zn+1 A0

)(
V#
n

0m×m

)
+
(

A0 0

yn+1 Sn

)( 0m×m

J[n]
(
W#

n Sn

)∗
tn+1

)

=
(

SnV
#
n

zn+1V
#
n

)
+
(

0

SnJ[n]S∗
n

(
W#

n

)∗
tn+1

)

=
(

SnV
#
n

An+1 − Mn+1,J

)
+
(

0

SnJ[n]S∗
n

(
W#

n

)∗
tn+1

)
. (3.18)

Lemma 2.9 and tn+1 ∈ Ln+1,J imply

SnJ[n]S∗
n(W

#
n )∗tn+1 =

[
W#

n (J[n] − Pn,J)
]∗

tn+1 =
[
W#

n J[n] − (0, Ln+1,J)
]∗

tn+1

= J[n]
(
W#

n

)∗
tn+1 −

(
0

Ln+1,J tn+1

)
= J[n]

(
W#

n

)∗
tn+1 −

(
0

An+1 − Mn+1,J

)
. (3.19)
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From (3.18) and (3.19) then (3.7) follows. Thus, part (a) is proved. Part (b) can be verified

analogously. �

Proposition 3.4. Let J be anm × msignaturematrix, let n ∈ N0, and let (Aj)
n+1
j=0 be a J-Potapov sequence.

If n ∈ N then let Vn ∈ Yn,J and let Wn ∈ Zn,J . For each ζ ∈ C, let πn,J , ρn,J , σn,J , and τn,J be defined by

(2.13), (2.14), (2.16), and (2.17), respectively. Then:
(a) Let tn+1 ∈ Ln+1,J . In the case n = 0 let V1 be given by (3.3). If n ∈ N then let Vn+1 be defined by

(2.31) and (3.4). Then the the matrix polynomials πn+1,J and ρn+1,J defined for each ζ ∈ C by

πn+1,J(ζ ) := πn,J(ζ ) + ζ Jτ̃ [n]
n (ζ )tn+1 (3.20)

and

ρn+1,J(ζ ) := ρn,J(ζ ) + ζ Jσ̃ [n]
n (ζ )tn+1 (3.21)

admit the representations

πn+1,J(ζ ) = A0 + ζ en,m(ζ )(yn+1 + SnVn+1) (3.22)

and

ρn+1,J(ζ ) = Im + ζ en,m(ζ )Vn+1. (3.23)

(b) Let un+1 ∈ Rn+1,J . In the case n = 0 let W1 be given by (3.3). If n ∈ N then let Wn+1 be defined by

(2.31) and (3.8). Then the matrix polynomials σn+1,J and τn+1,J defined for each ζ ∈ C by

σn+1,J(ζ ) := σn,J(ζ ) + un+1ζ ρ̃[n]
n (ζ )J (3.24)

and

τn+1,J(ζ ) := τn,J(ζ ) + un+1ζ π̃ [n]
n (ζ )J (3.25)

admit the representations

σn+1,J(ζ ) = (Wn+1Sn + zn+1)ζ εn,m(ζ ) + A0 (3.26)

and

τn+1,J(ζ ) = Wn+1ζεn,m(ζ ) + Im. (3.27)

(c) Let tn+1 ∈ Ln+1,J and let un+1 ∈ Rn+1,J . For each ζ ∈ C, then the matrix polynomials πn+1,J ,

ρn+1,J , σn+1,J , and τn+1,J given by (3.20), (3.21), (3.24), and (3.25) satisfy the equations(
ζ Jτ̃

[n+1]
n+1,J (ζ ) πn+1,J(ζ )

ζ Jσ̃
[n+1]
n+1,J (ζ ) ρn+1,J(ζ )

)
=
(
ζ Jτ̃

[n]
n,J (ζ ) πn,J(ζ )

ζ Jσ̃
[n]
n,J (ζ ) ρn,J(ζ )

)(
ζ Im tn+1

ζu∗
n+1 Im

)
(3.28)

and(
ζ ρ̃

[n+1]
n+1,J (ζ )J ζ π̃

[n+1]
n+1,J (ζ )J

σn+1,J(ζ ) τn+1,J(ζ )

)
=
(

ζ Im ζ t∗n+1

un+1 Im

)(
ζ ρ̃

[n]
n,J (ζ )J ζ π̃

[n]
n,J (ζ )J

σn,J(ζ ) τn,J(ζ )

)
.

(3.29)



B. Fritzsche et al. / Linear Algebra and its Applications 431 (2009) 1027–1053 1045

Proof. Let tn+1 ∈ Ln+1,J and let un+1 ∈ Rn+1,J . If n = 0, then a straightforward calculation yields all

the assertions. Now let n� 1. Using Remark 2.10 and Lemma 3.3, we get then

πn+1,J(ζ ) = en,m(ζ )SnV
#
n + ζ Jen,m(ζ )(W#

n )∗tn+1

= en+1,m(ζ )

(
SnV

#
n

0m×m

)
+ en+1,m(ζ )

(
0m×m

J[n]
(
W#

n

)∗
tn+1

)

= en+1,m(ζ )Sn+1V
#
n+1 = (Im, ζ en,m(ζ ))

(
A0 0

yn+1 Sn

)(
Im

Vn+1

)
= A0 + ζ en,m(ζ )(yn+1 + SnVn+1)

for each ζ ∈ C, i.e., (3.22) holds true. Equations (3.23), (3.26), and (3.27) can be checked similarly.

Further, (3.28) and (3.29) follow by a straightforward calculation. �

Proposition 3.5. Let J be an m × m signature matrix, let k ∈ N, and let (Aj)
k
j=0 be a J-Potapov sequence.

Let π0,J , ρ0,J , σ0,J , and τ0,J be the constant matrix polynomials given in (2.13), (2.14), (2.16), and (2.17),

respectively. For each n ∈ N0,k−1, let tn+1 ∈ Ln+1,J and let un+1,J ∈ Rn+1,J , and let the matrix polyno-

mials πn+1,J , ρn+1,J , σn+1,J , and τn+1,J be recursively defined by (3.20), (3.21), (3.24), and (3.25), respec-

tively. Then for each n ∈ N0,k , the J-central J-Potapov function fc,n corresponding to (Aj)
n
j=0 admits the

representations

fc,n = πn,J,Dρ−1
n,J,D and fc,n = τ−1

n,J,Dσn,J,D

where πn,J,D (respectively, ρn,J,D, τn,J,D, σn,J,D) is the restriction of πn,J (respectively, ρn,J , τn,J , σn,J) onto

D.

Proof. Apply Proposition 3.4, Remark 3.2, Lemma 3.3, and Theorems 2.7 and 2.8. �
Our next considerations are aimed at deriving a recurrent construction of such quotient represen-

tations of a J-central J-Potapov function fc,n where the zeros of the determinant of the “denominator

function” are exactly the poles of fc,n.

Proposition 3.6. Let J be anm × msignaturematrix, let n ∈ N0, and let (Aj)
n+1
j=0 be a J-Potapov sequence.

If n ∈ N, then let Vn ∈ Yn,J and let Wn ∈ Zn,J . For each ζ ∈ C, let πn,J , ρn,J , σn,J , and τn,J be defined by

(2.13), (2.14), (2.16), and (2.17), respectively. Let tn+1 := L
+
n+1,J(An+1 − Mn+1,J), let un+1 := (An+1 −

Mn+1,J)R
+
n+1,J , and let the matrix polynomials πn+1,J , ρn+1,J , σn+1,J , and τn+1,J be given for all ζ ∈ C by

(3.20), (3.21), (3.24), and (3.25), respectively. For each ζ ∈ D, then the following statements hold:
(a) If N (ρn,J(ζ )) ∩ N (πn,J(ζ )) = {0m×1} then N (ρn+1,J(ζ )) ∩ N (πn+1,J(ζ )) = {0m×1}.
(b) IfN

([τn,J(ζ )]∗) ∩ N
([σn,J(ζ )]∗) = {0m×1} thenN

([τn+1,J(ζ )]∗) ∩ N
([σn+1,J(ζ )]∗) = {0m×1}.

Proof. Let ζ ∈ D. Suppose N (ρn,J(ζ )) ∩ N (πn,J(ζ )) = {0m×1}, and let x ∈ N (ρn+1,J(ζ )) ∩
N (πn+1,J(ζ )). If n = 0 then let V1 be given by (3.3). In the case n� 1, let Vn+1 be defined by (2.31)

and (3.4). Then Remark 3.2 and Lemma 3.3 yield Vn+1 ∈ Yn+1,J . Thus, Remark 3.1, Proposition 3.4, and

Lemma 2.15 imply that there exists a matrix B ∈ C(n+1)m×m such that the equations(
Im

Vn+1

)
x =

(
0m×m

B

)
x − ζ

(
B

0m×m

)
x (3.30)

and

(|ζ |2 − 1)x∗B∗Qn,JBx = x∗Rn+2,Jx (3.31)

are satisfied. According to [9, Lemma 3.7], the matrix Rn+2,J is nonnegative Hermitian. Thus, in view

of ζ ∈ D and Qn,J ≥ 0m×m, equation (3.31) yields x∗B∗Qn,JBx = 0 and therefore
√

Qn,JBx = 0, i.e.,

Qn,JBx = 0. From (3.30) we obtain in particular x = −ζ(Im, 0)Bx. Hence, using Lemma 2.9 we get
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Rn+1x = −ζRn+1,J(Im, 0)Bx = −ζ
(
Im, V

∗
n

)
Qn,JBx = 0.

Because of Remark 3.1 this implies

tn+1x = L
+
n+1,J(An+1 − Mn+1,J)R

+
n+1Rn+1x = 0

and, in view of (3.20) and (3.21), consequently πn(ζ )x = 0 and ρn(ζ )x = 0. Consequently, we have

x = 0m×1, i.e., N (ρn+1,J(ζ )) ∩ N (πn+1,J(ζ )) = {0m×1} holds. Thus, part (a) is proved. Part (b) can be

verified analogously. �

Proposition 3.7. Let J be an m × m signature matrix, let k ∈ N, and let (Aj)
k
j=0 be a J-Potapov sequence.

Letπ0,J ,ρ0,J ,σ0,J ,andτ0,J be the constantmatrix polynomials given in (2.13), (2.14), (2.16), and (2.17), respec-

tively. For each n ∈ N0,k−1, let tn+1 := L
+
n+1,J(An+1 − Mn+1,J) and let un+1,J := (An+1 − Mn+1,J)R

+
n+1,J ,

and let the matrix polynomials πn+1,J , ρn+1,J , σn+1,J , and τn+1,J be recursively defined by (3.20), (3.21),

(3.24), and (3.25), respectively. Then for each n ∈ N0,k and for each ζ ∈ D, det ρn,J(ζ ) /= 0 holds if and

only if det τn,J(ζ ) /= 0. Moreover, the J-central J-Potapov function fc,n corresponding to (Aj)
n
j=0 admits for

each ζ ∈ D with det ρn,J(ζ ) /= 0 the representations

fc,n(ζ ) = πn,J(ζ )(ρn,J(ζ ))−1 and fc,n(ζ ) = (τn,J(ζ ))−1σn,J(ζ ). (3.32)

Further, Hfc,n = {ζ ∈ D : det ρn,J(ζ ) /= 0} holds true.
Proof. Let n ∈ N0,k . Taking into account Remark 3.1 and Proposition 3.5we get {ζ ∈ D : det ρn,J(ζ ) /=
0} ⊆ Hfc,n and {ζ ∈ D : det τn,J(ζ ) /= 0} ⊆ Hfc,n . Now let ζ ∈ Hfc,n . Then Remark 3.1 and Proposition

3.5 yield

πn,J(ζ ) = fc,n(ζ )ρn,J(ζ ) and σn,J(ζ ) = τn,J(ζ )fc,n(ζ ). (3.33)

Obviously, N (ρ0,J(ζ )) ∩ N (π0,J(ζ )) = {0m×1} and N
([τ0,J(ζ )]∗) ∩ N

([σ0,J(ζ )]∗) = {0m×1} hold.

Thus, using Proposition 3.6, Remark 3.1, Proposition 3.4, Remark 3.2, and Lemma 3.3we getN (ρn,J(ζ ))
∩ N (πn,J(ζ )) = {0m×1} and N

([τn,J(ζ )]∗) ∩ N
([σn,J(ζ )]∗) = {0m×1}. In view of (3.33) we obtain

therefore det ρn,J(ζ ) /= 0 and det τn,J(ζ ) /= 0. Hence Hfc,n = {ζ ∈ D : det ρn,J(ζ ) /= 0} = {ζ ∈ D :
det τn,J(ζ ) /= 0} holds true. Consequently, application of Remark 3.1 and Proposition 3.5 yields (3.32)

for each ζ ∈ D with det ρn,J(ζ ) /= 0. Thus, the proof is complete. �

4. Recursion formulas for the Arov–Krein resolvent matrices

In this section we generalize some results for p × q Schur sequences obtained in [7, Section 4] to

the case of J-Potapov sequences.

Lemma 4.1. Let n ∈ N0, let J be an m × m signature matrix, and let (Aj)
n
j=0 be a J-Potapov sequence. If

n� 1, then let Vn ∈ Yn,J and Wn ∈ Zn,J . Let the matrix polynomials πn,J , ρn,J , σn,J , and τn,J be given by

(2.13), (2.14), (2.16), and (2.17), respectively. Let the matrix-valued functions Cn,J : C → C2m×2m and

Dn,J : C → C2m×2m be defined by

Cn,J(ζ ) :=
(
ζ Jτ̃

[n]
n,J (ζ ) πn,J(ζ )

ζ Jσ̃
[n]
n,J (ζ ) ρn,J(ζ )

)(√
Ln+1,J

+
0m×m

0m×m

√
Rn+1,J

+
)

(4.1)

and

Dn,J(ζ ) :=
(√

Rn+1,J
+

0m×m

0m×m

√
Ln+1,J

+
)(

ζ ρ̃
[n]
n,J (ζ )J ζ π̃

[n]
n,J (ζ )J

σn,J(ζ ) τn,J(ζ )

)
. (4.2)

Then, for each ζ ∈ C,

Dn,J(ζ )

(
0m×m Im−Im 0m×m

)
Cn,J(ζ ) = ζ n+1

(
0m×m Rn+1,JR

+
n+1,J

−Ln+1,JL
+
n+1,J 0m×m

)
.
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Proof. Taking into account (2.32), Proposition 2.11, and the identities
√

Rn+1,J
+
Rn+1,J

√
Rn+1,J

+ =
Rn+1,JR

+
n+1,J and

√
Ln+1,J

+
Ln+1,J

√
Ln+1,J

+ = Ln+1,JL
+
n+1,J , the assertion follows by a straightforward

calculation. �

In the sequel, if a nonnegative integer n, an m × m signature matrix J, and a J-Potapov sequence

(Aj)
n
j=0 are given, then let �0,J , �0,J , �0,J , and �0,J be the constant matrix-valued functions defined by

�0,J(ζ ) := A0, �0,J := Im, �0,J := A0, and �0,J := Im. (4.3)

Furthermore, for each k ∈ N0,n−1, let tk+1 := L
+
k+1,J(Ak+1 − Mk+1,J) and uk+1 := (Ak+1 −

Mk+1,J)R
+
k+1,J , and let the matrix polynomials �k+1,J , �k+1,J , �k+1,J , and �k+1,J for each ζ ∈ C be

recursively defined by

�k+1,J(ζ ) := �k,J(ζ ) + ζ J�̃
[k]
k (ζ )tk+1, (4.4)

�k+1,J(ζ ) := �k,J(ζ ) + ζ J�̃
[k]
k (ζ )tk+1, (4.5)

�k+1,J(ζ ) := �k,J(ζ ) + uk+1ζ �̃
[k]
k (ζ )J, (4.6)

and

�k+1,J(ζ ) := �k,J(ζ ) + uk+1ζ �̃
[k]
k (ζ )J. (4.7)

Remark 4.2. Let J be an m × m signature matrix, let n ∈ N, let (Aj)
n
j=0 be a J-Potapov sequence, and

let k ∈ N0,n−1. Then Remark 3.1, Proposition 3.4, Remark 3.2, and Lemma 3.3 imply that there are

matrices Vk+1 ∈ Yk+1,J and Wk+1 ∈ Zk+1,J such that the matrix polynomials �k+1,J , �k+1,J , �k+1,J ,

and �k+1,J can be represented for each ζ ∈ C via

�k+1,J(ζ ) = A0 + ζ ek,m(ζ )(yk+1 + SkVk+1),

�k+1,J(ζ ) = Im + ζ ek,m(ζ )Vk+1,

�k+1,J(ζ ) = (Wk+1Sk + zk+1)ζ εk,m(ζ ) + A0,

and

�k+1,J(ζ ) = Wk+1ζεk,m(ζ ) + Im.

In the following, we will use the 2m × 2m signature matrix

jmm := diag(Im,−Im). (4.8)

Moreover, if J is anm × m signature matrix, then we will work with the 2m × 2m signature matrix

J� := diag(J,−J). (4.9)

The following result generalizes some parts of Proposition 4.7 in [7] to the case of finite J-Potapov

sequences.

Proposition 4.3. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a J-Potapov sequence.

For each k ∈ N0,n, let the matrix-valued functions C•
k,J : C → C2m×2m and D•

k,J : C → C2m×2m be

defined by

C•
k,J(ζ ) :=

⎛⎝ζ J�̃
[k]
k,J (ζ ) �k,J(ζ )

ζ J�̃
[k]
k,J (ζ ) �k,J(ζ )

⎞⎠(√
Lk+1,J

+
0m×m

0m×m

√
Rk+1,J

+
)

(4.10)

and

D•
k,J(ζ ) :=

(√
Rk+1,J

+
0m×m

0m×m

√
Lk+1,J

+
)(

ζ �̃
[k]
k,J (ζ )J ζ �̃

[k]
k,J (ζ )J

�k,J(ζ ) �k,J(ζ )

)
. (4.11)
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Moreover, for each k ∈ N0,n−1, let Kk+1,J := √
Lk+1,J

+
(Ak+1 − Mk+1,J)

√
Rk+1,J

+
, and let the matrix-

valued functions Gk+1,J : C → C2m×2m and Hk+1,J : C → C2m×2m be defined by

Gk+1,J(ζ ) :=
(

Im Kk+1,J

K∗
k+1,J Im

)(
ζ
√

Lk+1,J

√
Lk+2,J

+
0m×m

0m×m

√
Rk+1,J

√
Rk+2,J

+
)

and

Hk+1,J(ζ ) :=
(
ζ
√

Rk+2,J
+√

Rk+1,J 0m×m

0m×m

√
Lk+2,J

+√
Lk+1,J

)(
Im K∗

k+1,J

Kk+1,J Im

)
.

Then, for each k ∈ N0,n−1, the following statements hold:
(a) C•

k+1,J = C•
k,JGk+1,J and D•

k+1,J = Hk+1,JD
•
k,J .

(b) C•
k+1,J = C•

0,JG1,JG2,J · . . . · Gk+1,J and D•
k+1,J = Hk+1,JHk,J · . . . · H1,JD

•
0,J .

(c) For each ζ ∈ C,

diag
(
Lk+2,JL

+
k+2,J ,−Rk+2,JR

+
k+2,J

)
− (Gk+1,J(ζ ))∗jmmGk+1,J(ζ )

= diag
(
(1 − |ζ |2)Lk+2,JL

+
k+2,J , 0m×m

)
, (4.12)

(Gk+1,J(ζ ))∗ · diag
(
Lk+1,JL

+
k+1,J ,−Rk+1,JR

+
k+1,J

)
· Gk+1,J(ζ )

= (Gk+1,J(ζ ))∗jmmGk+1,J(ζ ), (4.13)

diag
(
Rk+2,JR

+
k+2,J ,−Lk+2,JL

+
k+2,J

)
− Hk+1,J(ζ )jmm(Hk+1,J(ζ ))∗

= diag
(
(1 − |ζ |2)Rk+2,JR

+
k+2,J , 0m×m

)
, (4.14)

and

Hk+1,J(ζ ) · diag
(
Rk+1,JR

+
k+1,J , −Lk+1,JL

+
k+1,J

)
· (Hk+1,J(ζ ))∗

= Hk+1,J(ζ )jmm(Hk+1,J(ζ ))∗. (4.15)

Proof. Letk ∈ N0,n−1, let tk+1 := L
+
k+1,J(Ak+1 − Mk+1,J), and letuk+1 := (Ak+1 − Mk+1,J)R

+
k+1,J . Then

Remark 4.2, Remark 3.1, and Proposition 3.4 yield⎛⎝ζ J�̃
[k+1]
k+1,J (ζ ) �k+1,J(ζ )

ζ J�̃
[k+1]
k+1,J (ζ ) �k+1,J(ζ )

⎞⎠ =
⎛⎝ζ J�̃

[k]
k,J (ζ ) �k,J(ζ )

ζ J�̃
[k]
k,J (ζ ) �k,J(ζ )

⎞⎠( ζ Im tk+1

ζu∗
k+1 Im

)
(4.16)

for each ζ ∈ C. Furthermore, from [9, Lemma 3.7 and Proposition 3.8] we know that Lk+2,J � Lk+1,J

and Rk+2,J � Rk+1,J are valid. In particular,√
Lk+1,J

+√
Lk+1,J

√
Lk+2,J

+ =
√
Lk+2,J

+
(4.17)

and √
Rk+1,J

+√
Rk+1,J

√
Rk+2,J

+ =
√
Rk+2,J

+
(4.18)

hold true. Taking into account (4.16), (4.17), and (4.18), the first equation stated in (a) follows by

straightforward calculation. The secondequationofpart (a) canbe checkedanalogously.Moreover, part

(b) is an immediate consequence of part (a). Now we are going to verify part (c). From [9, Proposition

4.1] the equations

Lk+2,J =
√
Lk+1,J

(
I − Kk+1,JK

∗
k+1,J

)√
Lk+1,J (4.19)
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and

Rk+2,J =
√
Rk+1,J

(
I − K∗

k+1,JKk+1,J

)√
Rk+1,J (4.20)

follow. Thus, in view of(
Im Kk+1,J

K∗
k+1,J Im

)∗
jmm

(
Im Kk+1,J

K∗
k+1,J Im

)

=
(
Im − Kk+1,JK

∗
k+1,J 0

0 −
(
Im − K∗

k+1,JKk+1,J

)) ,

√
Lk+2,J

+
Lk+2,J

√
Lk+2,J

+ = Lk+2,JL
+
k+2,J , and

√
Rk+2,J

+
Rk+2,J

√
Rk+2,J

+ = Rk+2,JR
+
k+2,J , we get (4.12).

Further, taking into account Lk+1,JL
+
k+1,JKk+1,J = Kk+1,J and Kk+1,JRk+1,JR

+
k+1,J = Kk+1,J , we obtain(

Im Kk+1,J

K∗
k+1,J Im

)∗ (Lk+1,JL
+
k+1,J 0

0 −Rk+1,JR
+
k+1,J

)(
Im Kk+1,J

K∗
k+1,J Im

)

=
⎛⎝Lk+1,JL

+
k+1,J − Kk+1,JK

∗
k+1,J 0

0 −
(
Rk+1,JR

+
k+1,J − K∗

k+1,JKk+1,J

)⎞⎠ . (4.21)

Furthermore, (4.19) and (4.20) imply immediately

Lk+2,J =
√
Lk+1,J

(
Lk+1,JL

+
k+1,J − Kk+1,JK

∗
k+1,J

)√
Lk+1,J (4.22)

and

Rk+2,J =
√
Rk+1,J

(
Rk+1,JR

+
k+1,J − K∗

k+1,JKk+1,J

)√
Rk+1,J . (4.23)

Thus, using (4.21), (4.22), (4.23), and (4.12) we obtain (4.13). Eqs. (4.14) and (4.15) can be checked

analogously. �

Corollary 4.4. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a J-Potapov sequence.

Let the matrix-valued functions C•
n,J and D•

n,J be defined as in Proposition 4.3. Further, let

En,J(ζ ) := diag
(
Ln+1,JL

+
n+1,J ,−Rn+1,JR

+
n+1,J

)
−
(
C•

n,J(ζ )
)∗

J�C•
n,J(ζ )

and

Fn,J(ζ ) := diag
(
Rn+1,JR

+
n+1,J ,−Ln+1,JL

+
n+1,J

)
− D•

n,J(ζ )J�
(
D•

n,J(ζ )
)∗

for each ζ ∈ C. Then:
(a) For each ζ ∈ D, the inequalities En,J(ζ ) � 02m×2m and Fn,J(ζ ) � 02m×2m hold.
(b) For each ζ ∈ T, the identities En,J(ζ ) = 02m×2m and Fn,J(ζ ) = 02m×2m are satisfied.
(c) For each ζ ∈ C \ (D ∪ T), the inequalities −En,J(ζ ) � 02m×2m and −Fn,J(ζ ) � 02m×2m hold.

Proof. Taking into account (4.3), (4.10), (4.11), (1.9), (1.10), and the relations
√

L1,J
+
L1,J

√
L1,J

+ = L1,JL
+
1,J

and
√

R1,J
+
R1,J

√
R1,J

+ = R1,JR
+
1,J , it is readily checked that E0,J(ζ ) = diag

(
(1 − |ζ |2)L1,JL+1,J , 0m×m

)
andF0,J(ζ ) = diag

(
(1 − |ζ |2)R1,JR+

1,J , 0m×m

)
hold true for each ζ ∈ C. Thus, in the case n = 0 all the

assertions follow. Now let n� 1. Then, for each ζ ∈ C, from Proposition 4.3 we obtain

En,J(ζ ) = diag
(
(1 − |ζ |2)Ln+1,JL

+
n+1,J , 0m×m

)
+ (Gn,J(ζ ))∗jmmGn,J(ζ ) − (Gn,J(ζ ))∗

(
C•

n−1,J(ζ )
)∗

J�C•
n−1,J(ζ )Gn,J(ζ )

= diag
(
(1 − |ζ |2)Ln+1,JL

+
n+1,J , 0m×m

)
+ (Gn,J(ζ ))∗En−1,J(ζ )Gn,J(ζ )
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and, similarly,

Fn,J(ζ ) = diag
(
(1 − |ζ |2)Rn+1,JR

+
n+1,J , 0m×m

)
+ Hn,J(ζ )Fn−1,J(ζ )(Hn,J(ζ ))∗.

Hence, in view of Ln+1,JL
+
n+1,J � 0m×m and Rn+1,JR

+
n+1,J � 0m×m the assertions follow by induction. �

5. The nondegenerate case

In this section, we extend larger parts of results obtained in Section 3 of [6] for finite p × q Schur

sequences.

Let J be an m × m signature matrix and let n ∈ N0. Throughout this section, we consider a strict

J-Potapov sequence (Aj)
n
j=0. Observe that in this case thematrices Pk,J andQk,J are nonsingular for each

k ∈ N0,n. Moreover, from [9, Lemmata 3.3 and 3.7] we know that, for each k ∈ N0,n, thematrices Lk+1,J

and Rk+1,J are nonsingular as well.

Remark 5.1. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a strict J-Potapov

sequence. For each k ∈ N1,n, then the sets Yk,J , Zk,J , Lk,J , and Rk,J defined by (2.9), (2.10), (3.1), and

(3.2), respectively, fulfill Yk,J = {V�
k }, Zk,J = {W�

k }, Lk,J = {t�k }, and Rk,J = {u�
k } where

V�
k := Q

−1
k−1,JS

∗
k−1J[k−1]yk , W�

k := zkJ[k−1]S∗
k−1P

−1
k−1,J , (5.1)

t�k := L
−1
k,J (Ak − Mk,J), and u�

k := (Ak − Mk,J)R
−1
k,J . (5.2)

Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a strict J-Potapov sequence. In the

sequel, for each k ∈ N0,n and each ζ ∈ C, let the matrix polynomials πk,J , ρk,J , σk,J , and τk,J be defined

by

πk,J(ζ ) :=
{
A0, if k = 0,

A0 + ζ ek−1,m(ζ )J[k−1]P−1
k−1,Jyk , if k ∈ N,

(5.3)

ρk,J(ζ ) :=
{
Im, if k = 0,

Im + ζ ek−1,m(ζ )J[k−1]S∗
k−1P

−1
k−1,Jyk , if k ∈ N,

(5.4)

σk,J(ζ ) :=
{
A0, if k = 0,

zkQ
−1
k−1,J J[k−1]ζεk−1,m(ζ ) + A0, if k ∈ N,

(5.5)

and

τk,J(ζ ) :=
{
Im, if k = 0,

zkQ
−1
k−1,JS

∗
k−1J[k−1]ζεk−1,m(ζ ) + Im, if k ∈ N.

(5.6)

Remark 5.2. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a strict J-Potapov

sequence. Let k ∈ N1,n. Then it is readily checked that the equations

J[k−1]S∗
k−1P

−1
k−1,J = Q

−1
k−1,JS

∗
k−1J[k−1],

I + Sk−1Q
−1
k−1,JS

∗
k−1J[k−1] = J[k−1]P−1

k−1,J ,

and

J[k−1]S∗
k−1P

−1
k−1,JSk−1 + I = Q

−1
k−1,J J[k−1]

hold. In particular, thematrix polynomialsπk,J , ρk,J , σk,J , and τk,J defined by (5.3), (5.4), (5.5), and (5.6),

respectively, fulfill
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πk,J(ζ ) = A0 + ζ ek−1,m(ζ )(yk + Sk−1V
�
k ),

ρk,J(ζ ) = Im + ζ ek−1,m(ζ )V�
k ,

σk,J(ζ ) =
(
W�

k Sk−1 + zk

)
ζεk−1,m(ζ ) + A0

and

τk,J(ζ ) = W�
k ζεk−1,m(ζ ) + Im

for each ζ ∈ C where V�
k andW�

k are given by (5.1).

Proposition 5.3. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a strict J-Potapov

sequence. For every k ∈ N0,n, let the matrix polynomials πk,J , ρk,J , σk,J , and τk,J be defined by (5.3), (5.4),

(5.5), and (5.6), respectively. Then the following statements hold:
(a) Let k ∈ N0,n. Then the J-central J-Potapov function fc,k corresponding to (Aj)

k
j=0 admits the repre-

sentations

fc,k = πk,J,D ρ−1
k,J,D and fc,k = τ−1

k,J,D σk,J,D (5.7)

where πk,J,D (respectively, ρk,J,D, σk,J,D, and τk,J,D) denotes the restriction of πk,J (respectively,
ρk,J , σk,J , and τk,J) onto D. Moreover, for the set Hfc,k of all points of D at which fc,k is holomorphic

the equations

Hfc,k = {ζ ∈ D : det ρk,J(ζ ) /= 0} = {ζ ∈ D : det τk,J(ζ ) /= 0}
hold true.

(b) Let n ∈ N, let k ∈ N0,n−1,and let t
�
k+1 andu

�
k+1 be givenby (5.2). Then, for each ζ ∈ C, the recursion

formulas

πk+1,J(ζ ) = πk,J(ζ ) + ζ Jτ̃
[k]
k (ζ )t�k+1, (5.8)

ρk+1,J(ζ ) = ρk,J(ζ ) + ζ Jσ̃
[k]
k (ζ )t�k+1, (5.9)

σk+1,J(ζ ) = σk,J(ζ ) + u�
k+1ζ ρ̃

[k]
k (ζ )J, (5.10)

and

τk+1,J(ζ ) = τk,J(ζ ) + u�
k+1ζ π̃

[k]
k (ζ )J (5.11)

are fulfilled.

Proof. Use Remarks 5.1 and 5.2, Theorems 2.7 and 2.8, Propositions 2.19 and 2.20, Remark 3.2, Lemma

3.3, and Proposition 3.4. �

Lemma 5.4. Let J be anm × msignaturematrix, let n ∈ N0, and let (Aj)
n
j=0 be a strict J-Potapov sequence.

For each k ∈ N0,n and each ζ ∈ C, let the matrix polynomials πk,J , ρk,J , σk,J , and τk,J be given by (5.3),

(5.4), (5.5), and (5.6), respectively. For each k ∈ N0,n, let thematrix-valued functionsCk,J : C → C2m×2m

and Dk,J : C → C2m×2m be defined by

Ck,J(ζ ) :=
⎛⎝ζ Jτ̃

[k]
k,J (ζ ) πk,J(ζ )

ζ Jσ̃
[k]
k,J (ζ ) ρk,J(ζ )

⎞⎠(√
Lk+1,J

−1
0m×m

0m×m

√
Rk+1,J

−1

)
(5.12)

and

Dk,J(ζ ) :=
(√

Rk+1,J
−1

0m×m

0m×m

√
Lk+1,J

−1

)(
ζ ρ̃

[k]
k,J (ζ )J ζ π̃

[k]
k,J (ζ )J

σk,J(ζ ) τk,J(ζ )

)
. (5.13)
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Then

Dn,J(ζ )UmmCn,J(ζ ) = ζ n+1Umm

holds for each ζ ∈ C where

Umm :=
(
0m×m Im−Im 0m×m

)
.

Proof. Use Remarks 5.1 and 5.2 as well as Lemma 4.1. �

Let us now recall the notion of linear fractional transformations of matrices (see Potapov [11]). Let

A and B be complex 2m × 2m matrices and let

A =
(
a b

c d

)
and B =

(
α γ
β δ

)
be them × m block representations of A and B. If the set

Q(c,d) :=
{
x ∈ Cm×m : det(cx + d) /= 0

}
is nonempty, then let S(m,m)

A : Q(c,d) → Cm×m be defined by

S(m,m)
A (x) := (ax + b)(cx + d)−1.

If the set

R( γ
δ )

:= {x ∈ Cm×m : det(xγ + δ) /= 0}
is nonempty, then let T (m,m)

A : R( γ
δ )

→ Cm×m be defined by

T (m,m)
A (x) := (xγ + δ)−1(xα + β).

Observe thatQ(c,d) /= ∅ if and only if rank(c, d) = m. Moreover,R( γ
δ )

/= ∅ if and only if rank
(
γ
δ

)
=

m.

Remark 5.5. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a strict J-Potapov

sequence. Let the matrix-valued functions Cn,J : C → C2m×2m and Dn,J : C → C2m×2m be defined

as in Lemma 5.4. Taking into account Lemma 5.4 and awell-known result on linear fractional transfor-

mations ofmatrices (see, e.g., [2, Lemma1.6.2 andProposition 1.6.1]),we infer that for each ζ ∈ C \ {0}
the mappings S(m,m)

Cn,J(ζ ) and T (m,m)
Dn,J(ζ ) are well-defined and fulfill

S(m,m)
Cn,J(ζ ) = T (m,m)

Dn,J(ζ ). (5.14)

Further, one can easily see that S(m,m)
Cn,J(0)

and T (m,m)
Dn,J(0)

arewell-defined and also coincide, i.e., (5.14) is valid

for all ζ ∈ C.

The following result generalizes parts of Proposition 3.2 in [6].

Proposition 5.6. Let J be an m × m signature matrix, let n ∈ N, and let (Aj)
n
j=0 be a strict J-Pota-

pov sequence. For each k ∈ N0,n, let the matrix-valued functions Ck,J : C → C2m×2m and Dk,J : C →
C2m×2m be defined as in Lemma 5.4. Further, for each k ∈ N1,n, let the matrix Kk,J be given by Kk,J :=√

Lk,J
−1

(Ak − Mk,J)
√

Rk,J
−1

, and let the matrix-valued functions Gk,J : C → C2m×2m and Hk,J : C →
C2m×2m be defined by

Gk,J(ζ ) :=
(
Im Kk,J

K∗
k,J Im

)(
ζ
√

Lk,J
√

Lk+1,J
−1

0m×m

0m×m

√
Rk,J

√
Rk+1,J

−1

)
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and

Hk,J(ζ ) :=
(
ζ
√

Rk+1,J
−1√

Rk,J 0m×m

0m×m

√
Lk+1,J

−1√
Lk,J

)(
Im K∗

k,J

Kk,J Im

)
.

Then for each k ∈ N1,n the equations

Ck,J = C0,JG1,JG2,J · . . . · Gk,J and Dk,J = Hk,JHk−1,J · . . . · H1,JD0,J

are satisfied. Moreover, for each k ∈ N1,n and each ζ ∈ C, the relations

jmm − (Gk,J(ζ ))∗jmmGk,J(ζ ) = diag
(
(1 − |ζ |2)Im, 0m×m

)
and

jmm − Hk,J(ζ )jmm(Hk,J(ζ ))∗ = diag
(
(1 − |ζ |2)Im, 0m×m

)
hold.

Proof. Use part (b) of Proposition 5.3 and Proposition 4.3. �

Proposition 5.7. Let J be an m × m signature matrix, let n ∈ N0, and let (Aj)
n
j=0 be a strict J-Potapov

sequence. Let the matrix-valued functions Cn,J and Dn,J be defined as in Lemma 5.4. Further, let

En,J(ζ ) := jmm − (Cn,J(ζ ))∗J�Cn,J(ζ ) and Fn,J(ζ ) := jmm − Dn,J(ζ )J�(Dn,J(ζ ))∗

for each ζ ∈ C. Then:
(a) For each ζ ∈ D, the inequalities En,J(ζ ) � 02m×2m and Fn,J(ζ ) � 02m×2m hold.
(b) For each ζ ∈ T, the identities En,J(ζ ) = 02m×2m and Fn,J(ζ ) = 02m×2m are satisfied.
(c) For each ζ ∈ C \ (D ∪ T), the inequalities −En,J(ζ ) � 02m×2m and −Fn,J(ζ ) � 02m×2m hold.

Proof. Use part (b) of Proposition 5.3 and Corollary 4.4. �
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