1,349 research outputs found

    Constituent Quarks and the Spin of the Proton

    Full text link
    The constituent quarks are interpreted as bound states, which have an internal structure. The quark distributions of the proton are related to those of the constituent quarks. The experiments support this hypothesis. Likewise the spin structure of the proton is related to the spin structure of the constituent quarks. We find that about 30% of the spin of a constituent quark is given by the valence quark, and 70% are provided by the gluons.Comment: 8 page

    Quark masses and mixings in the RS1 model with a condensing 4th generation

    Full text link
    We study the hierarchy of quark masses and mixings in a model based on a 5-dimensional spacetime with constant curvature of Randall-Sundrum type with two branes, where the Electroweak Symmetry Breaking is caused dynamically by the condensation of a 4th generation of quarks, due to underlying physics from the 5D bulk and the first KK gluons. We first study the hierarchy of quark masses and mixings that can be obtained from purely adjusting the profile localizations, finding that realistic masses are not reproduced unless non trivial hierarchies of underlying 4-fermion interactions from the bulk are included. Then we study global U(1) symmetries that can be imposed in order to obtain non-symmetric modified Fritzsch-like textures in the mass matrices that reproduce reasonably well quark masses and CKM mixings.Comment: Minor changes. Version accepted for publication in JHE

    The scalar glueball spectrum

    Get PDF
    We discuss scenarios for scalar glueballs using arguments based on sum rules, spectral decomposition, the 1Nc\frac{1}{N_c} approximation, the scales of the strong interaction and the topology of the flux tubes. We analyze the phenomenological support of those scenarios and their observational implications. Our investigations hint a rich low lying glueball spectrum.Comment: 11 pages: New title, figure, table and a more detailed comparison with experiment

    Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes

    Get PDF
    We interpret the newly observed muon g-2 anomaly in the framework of a leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly bi-maximal neutrino mixing. Useful constraints are obtained on the rates of lepton-flavor-violating rare decays τμγ\tau \to \mu \gamma, μeγ\mu \to e \gamma and τeγ\tau \to e \gamma as well as the μ\mu-ee conversion ratio RμeR_{\mu e}. We find that Γ(μeγ)\Gamma (\mu \to e \gamma), Γ(τeγ)\Gamma (\tau \to e \gamma) and RμeR_{\mu e} depend crucially on possible non-zero but samll values of the neutrino mixing matrix element Ve3V_{e3}, and they are also sensitive to the Dirac-type CP-violating phase. In particular, we show that Γ(τμγ)/mτ5\Gamma (\tau \to \mu \gamma)/m^5_\tau, Γ(μeγ)/mμ5\Gamma (\mu \to e \gamma)/m^5_\mu and Γ(τeγ)/mτ5\Gamma (\tau \to e \gamma)/m^5_\tau are approximately in the ratio 1:2Ve32:2Ve321: 2|V_{e3}|^2: 2|V_{e3}|^2 if Ve3|V_{e3}| is much larger than O(102){\cal O}(10^{-2}), and in the ratio 2(Δmatm2)2:(Δmsun2)2:(Δmsun2)22 (\Delta m^2_{\rm atm})^2: (\Delta m^2_{\rm sun})^2:(\Delta m^2_{\rm sun})^2 if Ve3|V_{e3}| is much lower than O(103){\cal O}(10^{-3}), where Δmatm2\Delta m^2_{\rm atm} and Δmsun2\Delta m^2_{\rm sun} are the corresponding mass-squared differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing

    The Spin Content of the Nucleon

    Full text link
    The fraction of the nucleon spin that is carried by the quarks, ΔΣ\Delta \Sigma, is computed in lattice QCD with dynamical staggered fermions. We obtain the value ΔΣ=0.18±0.02\Delta \Sigma = 0.18 \pm 0.02.Comment: (contribution to Lattice 1992), 4 pages + 1 encapsulated postscript figure, HLRZ 92-81 (In the earlier version the topological charge density was incorrectly normalized. ERRARE HUMANUM EST!

    Hierarchy and Up-Down Parallelism of Quark Mass Matrices

    Full text link
    In view of the quark mass hierarchy and in the assumption of the up-down parallelism, we derive two phenomenologically-favored patterns of Hermitian quark mass matrices from the quark flavor mixing matrix. We compare one of them with two existing {\it Ansa¨\it\ddot{a}tze} proposed by Rosner and Worah and by Roberts {\it et al}, and find that only the latter is consistent with the present experimental data.Comment: RevTex 9 pages. Accepted for publication in Phys. Rev.

    Deep inelastic scattering and factorization in the 't Hooft Model

    Full text link
    We study in detail deep inelastic scattering in the 't Hooft model. We are able to analytically check current conservation and to obtain analytic expressions for the matrix elements with relative precision O(1/Q^2) for 1-x >> \beta^2/Q^2. This allows us to compute the electron-meson differential cross section and its moments with 1/Q^2 precision. For the former we find maximal violations of quark-hadron duality, as it is expected for a large N_c analysis. For the latter we find violations of the operator product expansion at next-to-leading order in the 1/Q^2 expansion.Comment: 55 pages, 16 figure

    Embedding Phenomenological Quark-Lepton Mass Matrices into SU(5) Gauge Models

    Full text link
    We construct phenomenological quark-lepton mass matrices based on S3_3 permutation symmetry in a manner fully compatible with SU(5) grand unification. The Higgs particles we need are {\bf 5}, {\bf 45} and their conjugates. The model gives a charge -1/3 quark vs charged lepton mass relation, and also a good fit to mass-mixing relations for the quark sector, as well as an attractive mixing pattern for the lepton sector, explaining a large mixing angle between νμ\nu_\mu and ντ\nu_\tau, and either large or small νeνμ\nu_e-\nu_\mu mixing angle, depending on the choice of couplings, consistent with the currently accepted solutions to the solar neutrino problem.Comment: 12 pages, LaTex file, no figure

    RSFQ devices with selective dissipation for quantum information processing

    Full text link
    We study the possibility to use frequency dependent damping in RSFQ circuits as means to reduce dissipation and consequent decoherence in RSFQ/qubit circuits. We show that stable RSFQ operation can be achieved by shunting the Josephson junctions with an RCRC circuit instead of a plain resistor. We derive criteria for the stability of such an arrangement, and discuss the effect on decoherence and the optimisation issues. We also design a simple flux generator aimed at manipulating flux qubits

    Almost Maximal Lepton Mixing with Large T Violation in Neutrino Oscillations and Neutrinoless Double Beta Decay

    Get PDF
    We point out two simple but instructive possibilities to construct the charged lepton and neutrino mass matrices, from which the nearly bi-maximal neutrino mixing with large T violation can naturally emerge. The two lepton mixing scenarios are compatible very well with current experimental data on solar and atmospheric neutrino oscillations, and one of them may lead to an observable T-violating asymmetry between \nu_\mu --> \nu_e and \nu_e --> \nu_\mu transitions in the long-baseline neutrino oscillation experiments. Their implications on the neutrinoless double beta decay are also discussed.Comment: RevTex 15 pages (2 PS figures
    corecore