396 research outputs found

    The Theory of Caustics and Wavefront Singularities with Physical Applications

    Get PDF
    This is intended as an introduction to and review of the work of V, Arnold and his collaborators on the theory of Lagrangian and Legendrian submanifolds and their associated maps. The theory is illustrated by applications to Hamilton-Jacobi theory and the eikonal equation, with an emphasis on null surfaces and wavefronts and their associated caustics and singularities.Comment: Figs. not include

    A 3+1 covariant suite of Numerical Relativity Evolution Systems

    Full text link
    A suite of three evolution systems is presented in the framework of the 3+1 formalism. The first one is of second order in space derivatives and has the same causal structure of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system for a suitable choice of parameters. The second one is the standard first order version of the first one and has the same causal structure of the Bona-Masso system for a given parameter choice. The third one is obtained from the second one by reducing the space of variables in such a way that the only modes that propagate with zero characteristic speed are the trivial ones. This last system has the same structure of the ones recently presented by Kidder, Scheel and Teukolski: the correspondence between both sets of parameters is explicitly given. The fact that the suite started with a system in which all the dynamical variables behave as tensors (contrary to what happens with BSSN system) allows one to keep the same parametrization when passing from one system to the next in the suite. The direct relationship between each parameter and a particular characteristic speed, which is quite evident in the second and the third systems, is a direct consequence of the manifest 3+1 covariance of the approach

    Boundary conditions for hyperbolic formulations of the Einstein equations

    Get PDF
    In regards to the initial-boundary value problem of the Einstein equations, we argue that the projection of the Einstein equations along the normal to the boundary yields necessary and appropriate boundary conditions for a wide class of equivalent formulations. We explicitly show that this is so for the Einstein-Christoffel formulation of the Einstein equations in the case of spherical symmetry.Comment: 15 pages; text added and typesetting errors corrected; to appear in Classical and Quantum Gravit

    Image distortion in non perturbative gravitational lensing

    Get PDF
    We introduce the idea of {\it shape parameters} to describe the shape of the pencil of rays connecting an observer with a source lying on his past lightcone. On the basis of these shape parameters, we discuss a setting of image distortion in a generic (exact) spacetime, in the form of three {\it distortion parameters}. The fundamental tool in our discussion is the use of geodesic deviation fields along a null geodesic to study how source shapes are propagated and distorted on the path to an observer. We illustrate this non-perturbative treatment of image distortion in the case of lensing by a Schwarzschild black hole. We conclude by showing that there is a non-perturbative generalization of the use of Fermat's principle in lensing in the thin-lens approximation.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D (January 2001

    Press Release: The British Government has appointed Mr. Arthur Harry Tandy, C.B.E., as Head of the U.K. Delegation to the High Authority of the European Coal and Steel Community and British representative with the Commission of the European Atomic Energy Community (Euratom). European Coal and Steel Community High Authority Information Service, 17 July 1958.

    Get PDF
    We propose a method to assess the intrinsic risk carried by a financial position X when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value and Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff X with a given class of derivatives written on X, and use these derivatives to \u201ctest\u201d the pricing measures. We further introduce and study a general class of Value and Risk measures R(p,X,P) R(p,X,P) that describes the additional capital that is required to make X acceptable under a probability P and given the initial price p paid to acquire X

    Complete duality for quasiconvex dynamic risk measures on modules of the Lp-type

    Get PDF
    In the conditional setting we provide a complete duality between quasiconvex riskmeasures defined on L0 modules of the Lp type and the appropriate class of dual functions. This is based on a general result which extends the usual Penot-Volle representation for quasiconvex real valued maps

    Constraint propagation in the family of ADM systems

    Full text link
    The current important issue in numerical relativity is to determine which formulation of the Einstein equations provides us with stable and accurate simulations. Based on our previous work on "asymptotically constrained" systems, we here present constraint propagation equations and their eigenvalues for the Arnowitt-Deser-Misner (ADM) evolution equations with additional constraint terms (adjusted terms) on the right hand side. We conjecture that the system is robust against violation of constraints if the amplification factors (eigenvalues of Fourier-component of the constraint propagation equations) are negative or pure-imaginary. We show such a system can be obtained by choosing multipliers of adjusted terms. Our discussion covers Detweiler's proposal (1987) and Frittelli's analysis (1997), and we also mention the so-called conformal-traceless ADM systems.Comment: 11 pages, RevTeX, 2 eps figure

    Ill-posedness in the Einstein equations

    Get PDF
    It is shown that the formulation of the Einstein equations widely in use in numerical relativity, namely, the standard ADM form, as well as some of its variations (including the most recent conformally-decomposed version), suffers from a certain but standard type of ill-posedness. Specifically, the norm of the solution is not bounded by the norm of the initial data irrespective of the data. A long-running numerical experiment is performed as well, showing that the type of ill-posedness observed may not be serious in specific practical applications, as is known from many numerical simulations.Comment: 13 pages, 3 figures, accepted for publication in Journal of Mathematical Physics (to appear August 2000

    Continuous image distortion by astrophysical thick lenses

    Full text link
    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \Delta z = 0.2, we find that modeling the image distortion as two clusters in a single lens plane does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR

    Risk measures on P(R) and value at risk with probability/loss function

    Get PDF
    We propose a generalization of the classical notion of the V@Rλ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The V@Rλ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on math formula
    • …
    corecore