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We propose a generalization of the classical notion of the V@Rλ that takes into
account not only the probability of the losses, but the balance between such probability
and the amount of the loss. This is obtained by defining a new class of law invariant
risk measures based on an appropriate family of acceptance sets. The V@Rλ and other
known law invariant risk measures turn out to be special cases of our proposal. We
further prove the dual representation of Risk Measures on P(R).
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1. INTRODUCTION

We introduce a new class of law invariant risk measures � : P(R) → R ∪ {+∞} that are
directly defined on the set P(R) of probability measures on R and are monotone and
quasi-convex on P(R).

As Cherny and Madan (2009) pointed out, for a (translation invariant) coherent risk
measure defined on random variables, all the positions can be spited in two classes: accept-
able and not acceptable; in contrast, for an acceptability index there is a whole continuum
of degrees of acceptability defined by a system {Am}m∈R of sets. This formulation has
been further investigated by Drapeau and Kupper (2010) for the quasi-convex case, with
emphasis on the notion of an acceptability family and on the robust representation.

We adopt this approach and we build the maps � from a family {Am}m∈R of acceptance
sets of distribution functions by defining:

�(P) := − sup{m ∈ R | P ∈ Am}.
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In Section 3 we study the properties of such maps, we provide some specific examples,
and in particular we propose an interesting generalization of the classical notion of
V@Rλ.

The key idea of our proposal—the definition of the �V@R in Section 4—arises from
the consideration that to assess the risk of a financial position it is necessary to consider
not only the probability λ of the loss, as in the case of the V@Rλ, but the dependence
between such probability λ and the amount of the loss. In other terms, a risk prudent
agent is willing to accept greater losses only with smaller probabilities. Hence, we replace
the constant λ with a (increasing) function � : R →[0, 1] defined on losses, which we call
Probability/Loss function. The balance between the probability and the amount of the
losses is incorporated in the definition of the family of acceptance sets

Am := {Q ∈ P(R) | Q(−∞, x] ≤ �(x), ∀x ≤ m} , m ∈ R.

If PX is the distribution function of the random variable X , our new measure is defined
by:

�V@R(PX) := − sup {m ∈ R | P(X ≤ x) ≤ �(x), ∀x ≤ m} .

As a consequence, the acceptance sets Am are not obtained by the translation of A0

which implies that the map is not any more translation invariant. However, the similar
property

�V@R(PX+α) = �αV@R(PX) − α,

where �α(x) = �(x + α), holds true and is discussed in Section 4.
The V@Rλ and the worst case risk measure are special cases of the �V@R.
The approach of considering risk measures defined directly on the set of distribution

functions is not new and it was already adopted by Weber (2006). However, in this
paper we are interested in quasi-convex risk measures based—as the above mentioned
map—on families of acceptance sets of distributions and in the analysis of their robust
representation. We choose to define the risk measures on the entire set P(R) and not only
on its subset of probabilities having compact support, as it was done by Drapeau and
Kupper (2010). For this, we endow P(R) with the σ (P(R), Cb(R)) topology. The selection
of this topology is also justified by the fact (see Proposition 2.5) that for monotone maps
σ (P(R), Cb(R)) − lsc is equivalent to continuity from above. In Section 5 we briefly
compare the robust representation obtained in this paper and those obtained by Cerreia-
Vioglio (2009) and Drapeau and Kupper (2010).

Except for � = +∞, we show that there are no convex, σ (P(R), Cb(R)) − lsc trans-
lation invariant maps � : P(R) → R ∪ {+∞}. But there are many quasi-convex and
σ (P(R), Cb(R)) − lsc maps � : P(R) → R ∪ {+∞} that in addition are monotone and
translation invariant, as for example the V@Rλ, the entropic risk measure, and the worst
case risk measure. This is another good motivation to adopt quasi-convexity versus
convexity.

Finally, we provide the dual representation of quasi-convex, monotone, and
σ (P(R), Cb(R)) − lsc maps � : P(R) → R ∪ {+∞}—defined on the entire setP(R)—and
compute the dual representation of the risk measures associated to families of acceptance
sets and consequently of the �V@R.
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2. LAW INVARIANT RISK MEASURES

Let (�,F, P ) be a probability space and L0 =: L0(�,F, P ) be the space ofF measurable
random variables that are P almost surely finite. Any random variable X ∈ L0 induces a
probability measure PX on (R,BR) by PX(B) = P (X−1(B)) for every Borel set B ∈ BR.
We refer to Aliprantis and Border (2005, chapter 15) for a detailed study of the convex
set P =: P(R) of probability measures on R. Here we just recall some basic notions: for
any X ∈ L0 we have PX ∈ P so that we will associate to any random variable a unique
element in P . If P (X = x) = 1 for some x ∈ R then PX is the Dirac distribution δx that
concentrates the mass in the point x. A map ρ : L → R := R ∪ {−∞} ∪ {∞}, defined on
given subset L ⊆ L0, is law invariant if X , Y ∈ L and PX = PY implies ρ(X) = ρ(Y ).

Therefore, when considering law invariant risk measures ρ : L0 → R it is natural to
shift the problem to the set P by defining the new map � : P → R as �(PX ) = ρ(X). This
map � is well defined on the entire P , because there exists a bi-injective relation between
P and the quotient space L0

∼ (provided that (�,F, P ) supports a random variable with
uniform distribution), where the equivalence is given by X ∼D Y ⇔PX = PY . However,
P is only a convex set and the usual operations on P are not induced by those on L0,
namely (PX + PY )(A) = PX (A) + PY (A) �= PX+Y (A), A ∈ BR.

Recall that the first-order stochastic dominance on P is given by: Q � P ⇔ FP(x) ≤
FQ(x) for all x ∈ R, where FP(x) = P(−∞, x] and FQ(x) = Q(−∞, x] are the distribution
functions of P, Q ∈ P . Note that X ≤ Y P -a.s. implies PX � PY .

DEFINITION 2.1. A Risk Measure on P(R) is a map � : P → R ∪ {+∞} such that:

(Mon) � is monotone decreasing: P � Q implies �(P) ≥ �(Q);
(QCo) � is quasi-convex: �(λP + (1 − λ)Q) ≤ �(P)∨�(Q), λ ∈ [0, 1].

Quasi-convexity can be equivalently reformulated in terms of sublevel sets: a map
� is quasi-convex if for every c ∈ R the set Ac = {P ∈ P | �(P) ≤ c} is convex. As
recalled in Weber (2006), this notion of convexity is different from the one given for
random variables (as in Föllmer and Schied 2004) because it does not concern diver-
sification of financial positions. A natural interpretation in terms of compound lot-
teries is the following: whenever two probability measures P and Q are acceptable at
some level c and λ ∈ [0, 1] is a probability, then the compound lottery λP + (1 −
λ)Q, which randomizes over P and Q, is also acceptable at the same level. In terms
of random variables (namely X , Y which induce PX , PY ), the randomized probability
λPX + (1 − λ)PY will correspond to some random variable Z �= λX + (1 − λ)Y so that
the diversification is realized at the level of distribution and not at the level of portfolio
selection.

As suggested by Weber (2006), we define the translation operator Tm on the set P(R)
by: TmP(−∞, x] = P(−∞, x − m], for every m ∈ R. Equivalently, if PX is the probability
distribution of a random variable X we define the translation operator as TmPX = PX+m,
m ∈ R. As a consequence we map the distribution FX (x) into FX (x − m). Note that
P � TmP for any m > 0.

DEFINITION 2.2. If � : P → R ∪ {+∞} is a risk measure on P , we say that (TrI) � is
translation invariant if �(TmP) = �(P) − m for any m ∈ R.

Note that (TrI) corresponds exactly to the notion of cash additivity for risk measures
defined on a space of random variables as introduced in Artzner et al. (1999). It is well
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known (see Cerreia-Vioglio et al. 2011b) that for maps defined on random variables,
quasi-convexity and cash additivity imply convexity. However, in the context of distribu-
tions (QCo) and (TrI) do not imply convexity of the map �, as can be shown with the
simple examples of the V@R and the worst case risk measure ρw (see the examples in
Section 3.1).

The set P(R) spans the space ca(R) := {μ signed measure | Vμ < +∞} of all signed
measures of bounded variations on R. ca(R) (or simply ca) endowed with the norm Vμ =
sup

{∑n
i=1 |μ(Ai )| s.t. {A1, . . . , An} partition of R

}
is a norm complete and an Abstract

Lebesgue space (see Aliprantis and Border 2005, paragraph 10.11).
Let Cb(R) (or simply Cb) be the space of bounded continuous function f : R → R. We

endow ca(R) with the weak∗ topology σ (ca, Cb). The dual pairing 〈·, ·〉 : Cb × ca → R
is given by 〈f , μ〉 = ∫

fdμ and the function μ �→ ∫
fdμ (μ ∈ ca) is σ (ca, Cb) continuous.

Note that P is a σ (ca, Cb)-closed convex subset of ca (p. 507 in Aliprantis and Border
2005) so that σ (P, Cb) is the relativization of σ (ca, Cb) to P and any σ (P, Cb)-closed
subset of P is also σ (ca, Cb)-closed.

Even though (ca, σ (ca, Cb)) is not metrizable in general, its subset P is separable and
metrizable (see Aliprantis and Border 2005, theorem 15.12) and therefore when dealing
with convergence in P we may work with sequences instead of nets.

For every real function F we denote by C(F) the set of points in which the function F
is continuous.

THEOREM 2.3 (Shiryaev 1995, theorem 2, p. 314). Suppose that Pn, P ∈ P . Then

Pn
σ (P,Cb)−→ P if and only if FPn (x) → FP(x) for every x ∈ C(FP).

A sequence of probabilities {Pn} ⊂ P is decreasing, denoted with Pn↓, if FPn (x) ≤
FPn+1 (x) for all x ∈ R and all n.

DEFINITION 2.4. Suppose that Pn, P ∈ P . We say that Pn ↓ P whenever Pn ↓ and
FPn (x) ↑ FP(x) for every x ∈ C(FP). We say that (CfA) � is continuous from above if Pn

↓ P implies �(Pn) ↑ �(P).

PROPOSITION 2.5. Let � : P → R be (Mon). Then the following are equivalent:

� is σ (P, Cb)-lower semicontinuous
� is continuous from above.

Proof . Let � be σ (P, Cb)-lower semicontinuous and suppose that Pn ↓ P. Then

FPn (x) ↑ FP(x) for every x ∈ C(FP) and we deduce from Theorem 2.3 that Pn
σ (P,Cb)−→ P.

(Mon) implies �(Pn) ↑ and k:= limn�(Pn) ≤ �(P). The lower level set Ak = {Q ∈ P |
�(Q) ≤ k} is σ (P, Cb) closed and, because Pn ∈ Ak, we also have P ∈ Ak, i.e., �(P) = k,
and � is continuous from above.

Conversely, suppose that � is continuous from above. As P is metrizable we may
work with sequences instead of nets. For k ∈ R consider Ak = {P ∈ P | �(P) ≤ k} and

a sequence {Pn} ⊆ Ak such that Pn
σ (P,Cb)−→ P ∈ P . We need to show that P ∈ Ak. Lemma

2.6 shows that each FQn := (infm≥n FPm ) ∧ FP is the distribution function of a probability
measure and Qn ↓ P. From (Mon) and Pn � Qn, we get �(Qn) ≤ �(Pn). From (CfA)
then: �(P) = limn �(Qn) ≤ lim infn �(Pn) ≤ k. Thus, P ∈ Ak. �
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LEMMA 2.6. For every Pn
σ (P,Cp)−→ P we have that

FQn := inf
m≥n

FPm ∧ FP, n ∈ N,

is a distribution function associated to a probability measure Qn ∈ P such that
Qn ↓ P.

Proof . For each n, FQn is increasing and limx→−∞ FQn (x) = 0. Moreover, for real
valued maps right continuity and upper semicontinuity are equivalent. Because the inf-
operator preserves upper semicontinuity we can conclude that FQn is right continuous
for every n. Now we have to show that for each n, limx→+∞ FQn (x) = 1. By contra-
diction suppose that, for some n, limx→+∞ FQn (x) = λ < 1. We can choose a sequence
{xk}k ⊆ R with xk ∈ C(FP), xk↑ + ∞. In particular, FQn (xk) ≤ λ for all k and FP(xk) >

λ definitively, say for all k ≥ k0. We can observe that because xk ∈ C(FP), we have, for all
k ≥ k0, infm≥n FPm (xk) < limm→+∞ FPm (xk) = FP(xk). This means that the infimum is at-
tained for some index m(k) ∈ N , i.e., infm≥n FPm (xk) = FPm(k) (xk), for all k ≥ k0. Because
Pm(k)(−∞, xk] = FPm(k) (xk) ≤ λ then Pm(k)(xk, +∞) ≥ 1 − λ for k ≥ k0. We have two
possibilities. Either the set {m(k)}k is bounded or limkm(k) = +∞. In the first case, we
know that the number of those m(k) is finite. Among these m(k) we can find at least one
m and a subsequence {xh}h of {xk}k such that xh↑ + ∞ and Pm(xh, +∞) ≥ 1 − λ for
every h. We then conclude that

lim
h→+∞

Pm(xh, +∞) ≥ 1 − λ

and this is a contradiction. If limkm(k) = +∞, fix k ≥ k0 such that P(xk, +∞) < 1 − λ

and observe that for every k > k

Pm(k)(xk, +∞) ≥ Pm(k)(xk, +∞) ≥ 1 − λ.

Take a subsequence {m(h)}h of {m(k)}k such that m(h)↑ + ∞. Then:

lim
h→∞

inf Pm(h)(xk, +∞) ≥ 1 − λ > P(xk, +∞),

which contradicts the weak convergence Pn
σ (P,Cb)−→ P. Finally, note that FQn ≤ FPn and

Qn↓. From Pn
σ (P,Cb)−→ P and the definition of Qn, we deduce that FQn (x) ↑ FP(x) for every

x ∈ C(FP) so that Qn↓P. �
EXAMPLE 2.7 [The certainty equivalent]. It is very simple to build risk measures on

P(R). Take any continuous, bounded from below and strictly decreasing function f :
R → R. Then the map � f : P → R ∪ {+∞} defined by:

� f (P) := − f −1
(∫

f d P
)

(2.1)

is a Risk Measure on P(R). It is also easy to check that �f is (CfA) and therefore
σ (P, Cb)−lsc. Note that Proposition 5.2 will then imply that �f can not be convex.
By selecting the function f (x) = e−x we obtain �f (P) = ln (

∫
exp (−x)dFP(x))), which

is in addition (TrI). Its associated risk measure ρ : L0 → R ∪ {+∞} defined on ran-
dom variables, ρ(X) = �f (PX ) = ln (Ee−X ), is the Entropic (convex) Risk Measure. In
Section 5 we will see more examples based on this construction.
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3. A REMARKABLE CLASS OF RISK MEASURES ON P(R)

Given a family {Fm}m∈R of functions Fm : R → [0, 1], we consider the associated sets of
probability measures

Am := {Q ∈ P | FQ ≤ Fm}(3.1)

and the associated map � : P → R defined by

�(P) := − sup
{
m ∈ R | P ∈ Am}

.(3.2)

We assume hereafter that for each P ∈ P there exists m such that P /∈ Am so that � :
P → R ∪ {+∞}.

Note that �(P) := inf {m ∈ R | P ∈ Am}, where Am =: A−m and �(P) can be inter-
preted as the minimal risk acceptance level under which P is still acceptable. The following
discussion will show that under suitable assumption on {Fm}m∈R we have that {Am}m∈R

is a risk acceptance family as defined in Drapeau and Kupper (2010).
We recall from Drapeau and Kupper (2010) the following definition

DEFINITION 3.1. A monotone decreasing family of sets {Am}m∈R contained in P is left
continuous in m if

Am =:
⋂
ε>0

Am−ε.

In particular it is left continuous if it is left continuous in m for every m ∈ R.

LEMMA 3.2. Let {Fm}m∈R be a family of functions Fm : R → [0, 1] and Am be the set
defined in (3.1). Then:

1. If, for every x ∈ R, F ·(x) is decreasing (w.r.t. m) then the family {Am} is monotone
decreasing: Am ⊆ An for any level m ≥ n.

2. For any m, Am is convex and satisfies: Q � P ∈ Am ⇒ Q ∈ Am.
3. If, for every m ∈ R, Fm(x) is right continuous w.r.t. x then Am is σ (P, Cb)−closed.
4. Suppose that, for every x ∈ R, Fm(x) is decreasing w.r.t. m. If Fm(x) is left continuous

w.r.t. m, then the family {Am} is left continuous.
5. Suppose that, for every x ∈ R, Fm(x) is decreasing w.r.t. m and that, for every m ∈ R,

Fm(x) is right continuous and increasing w.r.t. x and limx→+∞Fm(x) = 1. If the family
{Am} is left continuous in m then Fm(x) is left continuous in m.

Proof .

1. If Q ∈ Am and m ≥ n then FQ ≤ Fm ≤ Fn, i.e., Q ∈ An .
2. Let Q, P ∈ Am and λ ∈ [0, 1]. Consider the convex combination λQ + (1 − λ)P

and note that

FλQ+(1−λ)P ≤ FQ ∨ FP ≤ Fm,

as FP ≤ Fm and FQ ≤ Fm. Then λQ + (1 − λ)P ∈ Am.

3. Let Qn ∈ Am and Q ∈ P satisfy Qn
σ (P,Cb)−→ Q. By Theorem 2.3 we know

that FQn (x) → FQ(x) for every x ∈ C(FQ). For each n, FQn ≤ Fm and therefore
FQ(x) ≤ Fm(x) for every x ∈ C(FQ). By contradiction, suppose that Q /∈ Am. Then
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there exists x̄ /∈ C(FQ) such that FQ(x̄) > Fm(x̄). By right continuity of FQ for every
ε > 0 we can find a right neighborhood [x̄, x̄ + δ(ε)) such that

|FQ(x) − FQ(x̄)| < ε ∀ x ∈ [x̄, x̄ + δ(ε))

and we may require that δ(ε) ↓ 0 if ε ↓ 0. Note that for each ε > 0 we can always
choose xε ∈ (x̄, x̄ + δ(ε)) such that xε ∈ C(FQ). For such xε we deduce that

Fm(x̄) < FQ(x̄) < FQ(xε) + ε ≤ Fm(xε) + ε.

This leads to a contradiction because if ε ↓ 0 we have that xε ↓ x̄ and thus by right
continuity of Fm:

Fm(x̄) < FQ(x̄) ≤ Fm(x̄).

4. By assumption we know that Fm−ε(x) ↓ Fm(x) as ε ↓ 0, for all x ∈ R. By item 1, we
know that Am ⊆ ⋂

ε>0
Am−ε. By contradiction, we suppose that the strict inclusion

Am ⊂
⋂
ε>0

Am−ε

holds, so that there will exist Q ∈ P such that FQ ≤ Fm−ε for every ε > 0 but
FQ(x) > Fm(x) for some x ∈ R. Set δ = FQ(x) − Fm(x) so that FQ(x) > Fm(x) + δ

2 .
Because Fm−ε ↓ Fm we may find ε > 0 such that Fm−ε(x) − Fm(x) < δ

2 . Thus,
FQ(x) ≤ Fm−ε(x) < Fm(x) + δ

2 and this is a contradiction.
5. Assume that Am−ε ↓ Am. Define F(x) := limε↓0 Fm−ε(x) = infε>0 Fm−ε(x) for all

x ∈ R. Then F : R → [0, 1] is increasing, right continuous (because the inf pre-
serves this property). Note that for every ε > 0 we have Fm−ε ≥ F ≥ Fm and
then Am−ε ⊇ {Q ∈ P | FQ ≤ F} ⊇ Am and limx→+∞F(x) = 1. Necessarily we con-
clude {Q ∈ P | FQ ≤ F} = Am. By contradiction, we suppose that F(x) > Fm(x)
for some x ∈ R. Define FQ : R → [0, 1] by: FQ(x) = F(x)1[x,+∞)(x). The above
properties of F guarantees that FQ is a distribution function of a correspond-
ing probability measure Q ∈ P , and because FQ ≤ F , we deduce Q ∈ Am, but
FQ(x) > Fm(x) and this is a contradiction. �

The following Lemma can be deduced directly from the above Lemma 3.2 and from
theorem 1.7 in Drapeau and Kupper (2010) (using the risk acceptance family Am =: A−m,
according to definition 1.6 in the aforementioned paper). We provide the proof for sake
of completeness.

LEMMA 3.3. Let {Fm}m∈R be a family of functions Fm : R → [0, 1] and � be the asso-
ciated map defined in (3.2). Then:

1. The map � is (Mon) on P .
2. If, for every x ∈ R, F ·(x) is decreasing (w.r.t. m) then � is (QCo) on P .
3. If, for every x ∈ R, F ·(x) is left continuous and decreasing (w.r.t. m) and if, for every

m ∈ R, Fm( · ) is right continuous (w.r.t. x) then

Am := {Q ∈ P | �(Q) ≤ m} = A−m, ∀m,(3.3)

and � is σ (P, Cb) lower semicontinuous.
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Proof .

1. From P � Q we have FQ ≤ FP and

{m ∈ R | FP ≤ Fm} ⊆ {
m ∈ R | FQ ≤ Fm

}
,

which implies �(Q) ≤ �(P).
2. We show that Q1, Q2 ∈ P , �(Q1) ≤ n, and �(Q2) ≤ n imply that

�(λQ1 + (1 − λ)Q2) ≤ n, that is

sup
{
m ∈ R | FλQ1+(1−λ)Q2 ≤ Fm

} ≥ −n.

By definition of the supremum, ∀ε > 0 ∃mi s.t. FQi ≤ Fmi and mi > −�(Qi) −
ε ≥ −n − ε. Then FQi ≤ Fmi ≤ F−n−ε, as {Fm} is a decreasing family. Therefore,
λFQ1 + (1 − λ)FQ2 ≤ F−n−ε and −�(λQ1 + (1 − λ)Q2λ) ≥ −n − ε. As this holds
for any ε > 0, we conclude that � is quasi-convex.

3. The fact that A−m ⊆ Am follows directly from the definition of �, as if Q ∈ A−m

�(Q) := − sup
{
n ∈ R | Q ∈ An} = inf

{
n ∈ R | Q ∈ A−n} ≤ m.

We have to show that Am ⊆ A−m. Let Q ∈ Am. Because �(Q) ≤ m, for all ε > 0
there exists m0 such that m + ε > −m0 and FQ ≤ Fm0 . Because F ·(x) is decreasing
(w.r.t. m) we have that FQ ≤ F−m−ε , therefore, Q ∈ A−m−ε for any ε > 0. By the left
continuity in m of F ·(x), we know that{Am} is left continuous (Lemma 3.2, item 4)
and so: Q ∈ ⋂

ε>0
A−m−ε = A−m.

From the assumption that Fm( · ) is right continuous (w.r.t. x ) and Lemma 3.2 (item
3), we already know that Am is σ (P, Cb)-closed, for any m ∈ R, and therefore the lower
level sets Am = A−m are σ (P, Cb)-closed and � is σ (P, Cb) -lower-semicontinuous. �

DEFINITION 3.4. A family {Fm}m∈R of functions Fm : R → [0, 1] is feasible if

• For any P ∈ P there exists m such that P /∈ Am.
• For every m ∈ R, Fm( · ) is right continuous (w.r.t. x).
• For every x ∈ R, F ·(x) is decreasing and left continuous (w.r.t. m).

From Lemmas 3.2 and 3.3 we immediately deduce:

PROPOSITION 3.5. Let {Fm}m∈R be a feasible family. Then the associated family {Am}m∈R

is monotone decreasing and left continuous and each set Am is convex and σ (P, Cb)-closed.
The associated map � : P → R ∪ {+∞} is well defined, (Mon), (Qco), and σ (P, Cb)-lsc.

REMARK 3.6. Let {Fm}m∈R be a feasible family. If there exists an m such that
limx→+∞ Fm(x) < 1 then limx→+∞Fm(x) < 1 for every m ≥ m and then Am = ∅ for
every m ≥ m. Obviously, if an acceptability set is empty then it does not contribute to the
computation of the risk measure defined in (3.2). For this reason we will always consider
without loss of generality (w.l.o.g.) a class {Fm}m∈R such that limx→+∞Fm(x) = 1 for
every m.
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3.1. Examples

As explained in the introduction, we define a family of risk measures employing a
Probability/Loss function �. Fix the right continuous function � : R → [0, 1] and define
the family {Fm}m∈R of functions Fm : R → [0, 1] by

Fm(x) := �(x)1(−∞,m)(x) + 1[m,+∞)(x).(3.4)

It is easy to check that if supx∈R �(x) < 1 then the family {Fm}m∈R is feasible and
therefore, by Proposition 3.5, the associated map � : P → R ∪ {+∞} is well defined,
(Mon), (Qco), and σ (P, Cb)-lsc.

EXAMPLE 3.7. When supx∈R �(x) = 1, � may take the value −∞. The extreme case is
when, in the definition of the family (3.4), the function � is equal to the constant one,
�(x) = 1, and so: Am = P for all m and � = −∞.

EXAMPLE 3.8. Worst case risk measure: �(x) = 0.
Take in the definition of the family (3.4) the function � to be equal to the constant

zero: �(x) = 0. Then:

Fm(x) : = 1[m,+∞)(x),

Am : = {
Q ∈ P | FQ ≤ Fm

} = {Q ∈ P | δm � Q} ,

�w (P) : = − sup {m | P ∈ Am} = − sup {m | δm � P}
= − sup {x ∈ R | FP(x) = 0} ,

so that, if X ∈ L0 has distribution function PX ,

�w (PX) = − sup {m ∈ R | δm � PX} = −ess inf(X) := ρw (X)

coincide with the worst case risk measure ρw. As the family {Fm} is feasible, �w : P(R) →
R ∪ {+∞} is (Mon), (Qco), and σ (P, Cb)-lsc. In addition, it also satisfies (TrI).

Even though ρw: L0 → R ∪ {∞} is convex, as a map defined on random variables,
the corresponding �w : P → R ∪ {∞}, as a map defined on distribution functions, is
not convex, but it is quasi-convex and quasi-concave. Indeed, let P ∈ P and, because
FP ≥ 0, we set:

−�w (P) = inf(FP) := sup {x ∈ R : FP(x) = 0} .

If F1, F2 are two distribution functions corresponding to P1, P2 ∈ P then for all λ ∈ (0,
1) we have:

inf(λF1 + (1 − λ)F2) = min(inf(F1), inf(F2)) ≤ λ inf(F1) + (1 − λ) inf(F2)

and therefore, for all λ ∈ [0, 1]

min(inf(F1), inf(F2)) ≤ inf(λF1 + (1 − λ)F2) ≤ λ inf(F1) + (1 − λ) inf(F2).

EXAMPLE 3.9. Value at Risk V@Rλ: �(x): λ ∈ (0, 1).
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Take in the definition of the family (3.4), the function � to be equal to the constant λ,
�(x) = λ ∈ (0, 1). Then

Fm(x) : = λ1(−∞,m)(x) + 1[m,+∞)(x),

Am : = {
Q ∈ P | FQ ≤ Fm

}
,

�V@Rλ
(P) : = − sup {m ∈ R | P ∈ Am} .

If the random variable X ∈ L0 has distribution function PX and q+
X (λ) =

sup {x ∈ R | P (X ≤ x) ≤ λ} is the right continuous inverse of PX then

�V@Rλ
(PX) = − sup {m | PX ∈ Am}

= − sup {m | P (X ≤ x) ≤ λ ∀x < m}
= − sup {m | P (X ≤ m) ≤ λ}
= −q+

X (λ) := V@Rλ(X)

coincide with the Value at Risk of level λ ∈ (0, 1). As the family {Fm} is feasible,
�V@Rλ

: P → R ∪ {+∞} is (Mon), (Qco), σ (P, Cb) -lsc. In addition, it also satisfies
(TrI).

As well known, V@Rλ: L0 → R ∪ {∞} is not quasi-convex, as a map defined on
random variables, even though the corresponding �V@Rλ

: P → R ∪ {∞}, as a map
defined on distribution functions, is quasi-convex (see Drapeau and Kupper 2010 for a
discussion on this issue).

EXAMPLE 3.10. Fix the family {�m}m∈R of functions �m : R → [0, 1] such that for
every m ∈ R, �m( · ) is right continuous (w.r.t. x) and for every x ∈ R, �·(x) is decreasing
and left continuous (w.r.t. m). Define the family {Fm}m∈R of functions Fm : R → [0, 1] by

Fm(x) := �m(x)1(−∞,m)(x) + 1[m,+∞)(x).(3.5)

It is easy to check that if supx∈R �m0 (x) < 1, for some m0 ∈ R, then the family {Fm}m∈R

is feasible and therefore the associated map � : P → R ∪ {+∞} is well defined, (Mon),
(Qco), σ (P, Cb)-lsc.

4. ON THE �V@R

We now propose a generalization of the V@Rλ which appears useful for possible appli-
cation whenever an agent is facing some ambiguity on the parameter λ, namely λ is given
by some uncertain value in a confidence interval [λm, λM ], with 0 ≤ λm ≤ λM ≤ 1. The
V@Rλ corresponds to case λm = λM and one typical value is λM = 0, 05.

We will distinguish two possible classes of agents:

Risk Prudent Agents: Fix the increasing right continuous function � : R → [0, 1],
choose as in (3.4)

Fm(x) = �(x)1(−∞,m)(x) + 1[m,+∞)(x)

and set λm := inf � ≥ 0, λM := sup � ≤ 1. As the function � is increasing, we are as-
signing to a lower loss a lower probability. In particular, given two possible choices �1,
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�2 for two different agents, the condition �1 ≤ �2 means that the agent 1 is more risk
prudent than agent 2. Set, as in (3.1), Am = {

Q ∈ P | FQ ≤ Fm
}

and define as in (3.2)

�V@R(P) := − sup
{
m ∈ R | P ∈ Am}

.

Thus, in case of a random variable X

�V@R(PX) := − sup {m ∈ R | P (X ≤ x) ≤ �(x), ∀x ≤ m} .

In particular, it can be rewritten as

�V@R(PX) = − inf {x ∈ R | P (X ≤ x) > �(x)} .

If both FX and � are continuous �V@R corresponds to the smallest intersection between
the two curves.

In this section, we assume that

λM < 1.

Besides its obvious financial motivation, this request implies that the corresponding
family Fm is feasible and so �V@R(P) > −∞ for all P ∈ P .

The feasibility of the family {Fm} implies that the �V@R : P → R∪ {∞} is well
defined, (Mon), (QCo), and (CfA) (or equivalently σ (P, Cb)-lsc) map.

EXAMPLE 4.1. One possible simple choice of the function � is represented by the step
function:

�(x) = λm1(−∞,x̄)(x) + λM1[x̄,+∞)(x).

The idea is that with a probability of λM we are accepting to loose at most x̄. In this case
we observe that:

�V@R(P) =
{

V@RλM(P) if V@Rλm (P) ≤ −x̄

V@Rλm (P) if V@Rλm (P) > −x̄.

Even though the �V@R is continuous from above (Proposition 3.5 and 2.5), it
may not be continuous from below, as this example shows. For instance, take x̄ = 0
and PXn induced by a sequence of uniformly distributed random variables Xn ∼
U

[−λm − 1
n , 1 − λm − 1

n

]
. We have PXn ↑ PU[−λm,1−λm] but �V@R(PXn ) = − 1

n for every
n and �V@R(PU[−λm,1−λm ]) = λM − λm.

REMARK 4.2.

(i) If λm = 0 the domain of �V@R(P) is not the entire convex set P . We have two
possible cases
• supp(�) = [x∗, +∞): in this case �V@R(P) = − inf supp(FP) for every P ∈ P
such that supp(FP) ⊇ supp(�).
• supp(�) = (−∞, +∞): in this case

�V@R(P) = +∞ for all P, such that lim
x→−∞

FP(x)
�(x)

> 1,

�V@R(P) < +∞ for all P, such that lim
x→−∞

FP(x)
�(x)

< 1.
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In the case limx→−∞
FP(x)
�(x) = 1 both the previous behaviors might occur.

(ii) In case that λm > 0 then �V@R(P) < +∞ for all P ∈ P , so that �V@R is finite
valued.

We can prove a further structural property which is the counterpart of (TrI) for the
�V@R. Let α ∈ R any cash amount

�V@R(PX+α) = − sup {m | P (X + α ≤ x) ≤ �(x), ∀x ≤ m}
= − sup {m | P (X ≤ x − α) ≤ �(x), ∀x ≤ m}
= − sup {m | P (X ≤ y) ≤ �(y + α), ∀y ≤ m − α}
= − sup {m + α | P (X ≤ y) ≤ �(y + α), ∀y ≤ m}
= �αV@R(PX) − α,

where �α(x) = �(x + α). We may conclude that if we add a sure positive (resp. negative)
amount α to a risky position X then the risk decreases (resp. increases) of the value −α,
constrained to a lower (resp. higher) level of risk prudence described by �α ≥ � (resp.
�α ≤ �). For an arbitrary P ∈ P this property can be written as

�V@R(Tα P) = �αV@R(P) − α, ∀ α ∈ R,

where TαP(−∞, x] = P(−∞, x − α].

Risk Seeking Agents: Fix the decreasing right continuous function � : R → [0, 1],
with inf � < 1. Similarly as above, we define

Fm(x) = �(x)1(−∞,m)(x) + 1[m,+∞)(x)

and the (Mon), (QCo), and (CfA) map

�V@R(P) := − sup {m ∈ R | FP ≤ Fm} = − sup {m ∈ R | P (X ≤ m) ≤ �(m)} .

In this case, for eventual huge losses we are allowing the highest level of probability. As
in the previous example let α ∈ R and note that

�V@R(PX+α) = �αV@R(PX) − α,

where �α(x) = �(x + α). The property is exactly the same as in the former example
but here the interpretation is slightly different. If we add a sure positive (resp. negative)
amount α to a risky position X then the risk decreases (resp. increases) of the value −α,
constrained to a lower (resp. higher) level of risk seeking because �α ≤ � (resp. �α ≥
�).

REMARK 4.3. For a decreasing �, there is a simpler formulation—which will be used
in Section 5.3—of the �V@R that is obtained replacing in Fm the function � with the
line �(m) for all x < m. Let

F̃m(x) = �(m)1(−∞,m)(x) + 1[m,+∞)(x).

This family is of the type (3.5) and is feasible, provided the function � is continuous. For
a decreasing �, it is evident that

�V@R(P) = �Ṽ@R(P) := − sup
{
m ∈ R | FP ≤ F̃m

}
,

as the function � lies above the line �(m) for all x ≤ m.
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5. QUASI-CONVEX DUALITY

In literature we also find several results about the dual representation of law invariant
risk measures. Kusuoka (2001) contributed to the coherent case, although Frittelli and
Rosazza Gianin (2005) extended this result to the convex case. Jouini, Schachermayer, and
Touzi (2006) and Filipovic and Svindland (2012), in the convex case, and Svindland (2010)
in the quasi-convex case, showed that every law invariant risk measure is already weakly
lower semicontinuous. Recently, Cerreia-Vioglio et al. (2011b) provided a robust dual
representation for law invariant quasi-convex risk measures, which has been extended to
the dynamic case by Frittelli and Maggis (2011a, 2011b).

In Sections 5.1 and 5.2 we will treat the general case of maps defined on P , although in
Section 5.3 we specialize these results to show the dual representation of maps associated
to feasible families.

5.1. Reasons of the Failure of the Convex Duality for Translation Invariant
Maps on P

It is well known that the classical convex duality provided by the Fenchel-Moreau the-
orem (Fenchel 1949) guarantees the representation of convex and lower semicontinuous
functions and therefore is very useful for the dual representation of convex risk measures
(see Frittelli and Rosazza Gianin 2002). For any map � : P → R∪ {∞} let �∗ be the
convex conjugate:

�∗( f ) := sup
Q∈P

{∫
f d Q − �(Q)

}
, f ∈ Cb.

Applying the fact that P is a σ (ca, Cb)-closed convex subset of ca one can easily check
that the following version of Fenchel-Moreau Theorem holds true for maps defined on
P .

PROPOSITION 5.1 [Fenchel-Moreau]. Suppose that � : P → R∪ {∞} is σ (P, Cb)-lsc
and convex. If Dom(�) := {Q ∈ P | �(Q) < +∞} �= ∅ then Dom(�∗) �= ∅ and

�(Q) = sup
f ∈Cb

{∫
f d Q − �∗( f )

}
.

One trivial example of a proper σ (P, Cb)-lsc and convex map on P is given by Q →∫
fdQ, for some f ∈ Cb. But this map does not satisfy the (TrI) property. Indeed, we

show that in the setting of risk measures defined on P , weakly lower semicontinuity and
convexity are incompatible with translation invariance.

PROPOSITION 5.2. For any map � : P → R∪ {∞}, if there exists a sequence {Qn}n ⊆ P
such that limn�(Qn) = −∞ then Dom(�∗) = ∅.

Proof . For any f ∈ Cb(R)

�∗( f ) = sup
Q∈P

{∫
f d Q − �(Q)

}
≥

∫
f d(Qn) − �(Qn) ≥ inf

x∈R
f (x) − �(Qn),

which implies �∗ = +∞. �
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From Propositions (5.1) and (5.2) we immediately obtain:

COROLLARY 5.3. Let � : P → R∪ {∞} be σ (P, Cb)-lsc, convex and not identically equal
to +∞. Then � is not (TrI), is not cash sup additive (i.e., it does not satisfy: �(TmQ) ≤
�(Q) − m ) and limn�(δn) �= −∞. In particular, the certainty equivalent maps �f defined
in (2.1) can not be convex, as they are σ (P, Cb)-lsc and �f (δn) = −n.

5.2. The Dual Representation

As described in the examples in Section 3, the �V@Rλ
and �w are proper, σ (ca, Cb)-lsc,

quasi-convex, (Mon), and (TrI) maps � : P → R∪ {∞}. Therefore, the negative result
outlined in Corollary 5.3 for the convex case can not be true in the quasi-convex setting.

We recall that the seminal contribution to quasi-convex duality comes from the dual
representation by Volle (1998) and Penot and Volle (1990), which has been sharpened
to a complete quasi-convex duality by Cerreia-Vioglio et al. (2011b) (case of M-spaces),
Cerreia-Vioglio (2009) (preferences over menus), and Drapeau and Kupper (2010) (for
general topological vector spaces).

Here we replicate this result and provide the dual representation of a σ (P, Cb)-lsc
quasi-convex maps defined on the entire set P . The main difference is that our map � is
defined on a convex subset of ca and not a vector space (a similar result can be found
in Drapeau and Kupper 2010 for convex sets). But because P is σ (ca, Cb)-closed, the
first part of the proof will match very closely the one given by Volle. To achieve the
dual representation of σ (P, Cb)-lsc risk measures � : P → R∪ {∞} we will impose the
monotonicity assumption of � and deduce that in the dual representation the supremum
can be restricted to the set

C−
b = { f ∈ Cb | f is decreasing} .

This is natural as the first-order stochastic dominance implies (see theorem 2.70 in
Föllmer and Schied 2004) that

C−
b =

{
f ∈ Cb | Q, P ∈ P and P � Q ⇒

∫
f d Q ≤

∫
f d P

}
.(5.1)

Note that differently from Drapeau and Kupper (2010) the following proposition does
not require the extension of the risk map to the entire space ca(R). Once the representation
is obtained the uniqueness of the dual function is a direct consequence of theorem 2.19
in Drapeau and Kupper (2010) as explained by Proposition 5.9.

PROPOSITION 5.4.

(i) Any σ (P, Cb)-lsc and quasi-convex functional � : P → R ∪ {∞} can be represented
as

�(P) = sup
f ∈Cb

R
(∫

f d P, f
)

,(5.2)

where R : R × Cb → R is defined by

R(t, f ) := inf
Q∈P

{
�(Q) |

∫
f d Q ≥ t

}
.(5.3)
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(ii) If in addition � is monotone then (5.2) holds with Cb replaced by C−
b .

Proof . We will use the fact that σ (P, Cb) is the relativization of σ (ca, Cb) to the set
P . In particular, the lower level sets will be σ (ca, Cb)-closed.

(i) By definition, for any f ∈ Cb(R), R(
∫

fdP, f ) ≤ �(P) and therefore

sup
f ∈Cb

R
(∫

f d P, f
)

≤ �(P), P ∈ P.

Fix any P ∈ P and take ε ∈ R such that ε > 0. Then P does not belong to the
σ (ca, Cb)-closed convex set

Cε := {Q ∈ P : �(Q) ≤ �(P) − ε}

(if �(P) = +∞, replace the set Cε with {Q ∈ P : �(Q) ≤ M} , for any M). By the
Hahn Banach theorem there exists a continuous linear functional that strongly
separates P and Cε, i.e., there exists α ∈ R and f ε ∈ Cb such that∫

fεd P > α >

∫
fεd Q for all Q ∈ Cε.(5.4)

Hence:{
Q ∈ P :

∫
fεd P ≤

∫
fεd Q

}
⊆ (Cε)C = {Q ∈ P : �(Q) > �(P) − ε}(5.5)

and

�(P) ≥ sup
f ∈Cb

R
(∫

f d P, f
)

≥ R
(∫

fεd P, fε
)

= inf
{
�(Q) | Q ∈ P such that

∫
fεd P ≤

∫
fεd Q

}
≥ inf {�(Q) | Q ∈ P satisfying �(Q) > �(P) − ε} ≥ �(P) − ε.

(5.6)

(ii) We furthermore assume that � is monotone. As shown in (i), for every ε > 0 we
find f ε such that (5.4) holds true. We claim that there exists gε ∈ C−

b satisfying:∫
gεd P > α >

∫
gεd Q for all Q ∈ Cε,(5.7)

and then the above argument (in equations (5.4)–(5.6)) implies the thesis.

We define the decreasing function

gε(x) =: sup
y≥x

fε(y) ∈ C−
b .

First case: Suppose that gε(x) = supx∈R fε(x) =: s. In this case there exists a sequence
of {xn}n∈N ⊆ R such that xn → +∞ and f ε(xn) → s, as n → ∞. Define

gn(x) = s1(−∞,xn ] + fε(x)1(xn ,+∞)



16 M. FRITTELLI, M. MAGGIS, AND I. PERI

and note that s ≥ gn ≥ f ε and gn ↑ s. For any Q ∈ Cε we consider Qn defined by
FQn (x) = FQ(x)1[xn ,+∞). Because Q � Qn, monotonicity of � implies Qn ∈ Cε . Note that∫

gnd Q −
∫

fεd Qn = (s − fε(xn))Q(−∞, xn ]
n→+∞−→ 0, as n → ∞.(5.8)

From equation (5.4) we have

s ≥
∫

fεd P > α >

∫
fεd Qn for all n ∈ N.(5.9)

Letting δ = s − α > 0 we obtain s >
∫

fεd Qn + δ
2 . From (5.8), there exists n ∈ N such

that 0 ≤ ∫
gnd Q − ∫

fεd Qn < δ
4 for every n ≥ n. Therefore, ∀ n ≥ n

s >

∫
fεd Qn + δ

2
>

∫
gnd Q − δ

4
+ δ

2
=

∫
gnd Q + δ

4

and this leads to a contradiction as gn ↑ s. So the first case is excluded.

Second case: Suppose that gε(x) < s for any x > x. As the function gε ∈ C−
b is de-

creasing, there will exists at most a countable sequence of intervals {An}n≥0 on which gε

is constant. Set A0 = (−∞, b0), An = [an, bn) ⊂ R for n ≥ 1. W.l.o.g. we suppose that
An ∩ Am = ∅ for all n �= m (else, we paste together the sets) and an < an+1 for every n ≥ 1.
We stress that f ε(x) = gε(x) on D =:

⋂
n≥0 AC

n . For every Q ∈ Cε we define the probability
Q by its distribution function as

FQ(x) = FQ(x)1D +
∑
n≥1

FQ(an)1[an ,bn ).

As before, Q � Q and monotonicity of � implies Q ∈ Cε. Moreover,∫
gεd Q =

∫
D

fεd Q + fε(b0)Q(A0) +
∑
n≥1

fε(an)Q(An) =
∫

fεd Q.

From gε ≥ f ε and equation (5.4) we deduce∫
gεd P ≥

∫
fεd P > α >

∫
fεd Q =

∫
gεd Q for all Q ∈ Cε.

�
We reformulate the Proposition 5.4 and provide two dual representation of

σ (P(R), Cb)-lsc Risk Measure � : P(R) → R ∪ {∞} in terms of a supremum over a
class of probabilistic scenarios. Let

Pc(R) = {
Q ∈ P(R) | FQ is continuous

}
.

PROPOSITION 5.5. Any σ (P(R), Cb)-lsc Risk Measure � : P(R) → R ∪ {∞} can be rep-
resented as

�(P) = sup
Q∈Pc(R)

R
(

−
∫

FQd P, −FQ

)
.
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Proof . Note that for every f ∈ C−
b which is constant we have R(

∫
f d P, f ) =

inf Q∈P �(Q). Therefore, we may assume w.l.o.g. that f ∈ C−
b is not constant. Then

g := f − f (+∞)
f (−∞)− f (+∞) ∈ C−

b , inf g = 0, sup g = 1, and so: g ∈ {−FQ | Q ∈ Pc(R)
}
. In addi-

tion, because
∫

fdQ ≥ ∫
fdP i.f.f.

∫
gdQ ≥ ∫

gdP we obtain from (5.2) and (ii) of Proposition
5.4

�(P) = sup
f ∈C−

b

R
(∫

f d P, f
)

= sup
Q∈Pc(R)

R
(

−
∫

FQd P, −FQ

)
.

�
Finally, we state the dual representations for Risk Measures expressed either in terms

of the dual function R as used by Cerreia-Vioglio et al. (2011b), or considering the left
continuous version of R (see Lemma 5.7) in the formulation proposed by Drapeau and
Kupper (2010). If R : R × Cb(R) → R, the left continuous version of R( ·, f ) is defined
by:

R−(t, f ) := sup {R(s, f ) | s < t} .(5.10)

PROPOSITION 5.6. Any σ (P(R), Cb)-lsc Risk Measure � : P(R) → R ∪ {∞} can be rep-
resented as

�(P) = sup
f ∈C−

b

R
(∫

f d P, f
)

= sup
f ∈C−

b

R−
(∫

f d P, f
)

.(5.11)

The function R−(t, f ) defined in (5.10) can be written as

R−(t, f ) = inf {m ∈ R | γ (m, f ) ≥ t} ,(5.12)

where γ : R × Cb(R) → R is given by:

γ (m, f ) := sup
Q∈P

{∫
f d Q | �(Q) ≤ m

}
, m ∈ R.(5.13)

Proof . Note that R(·, f ) is increasing and R(t, f ) ≥ R−(t, f ). If f ∈ C−
b then P � Q ⇒∫

fdQ ≤ ∫
fdP. Therefore,

R−
(∫

f d P, f
)

:= sup
s<

∫
f d P

R(s, f ) ≥ lim
Pn↓P

R
(∫

f d Pn, f
)

.

From Proposition 5.4 (ii) we obtain:

�(P) = sup
f ∈C−

b

R
(∫

f d P, f
)

≥ sup
f ∈C−

b

R−
(∫

f d P, f
)

≥ sup
f ∈C−

b

lim
Pn↓P

R
(∫

f d Pn, f
)

= lim
Pn↓P

sup
f ∈C−

b

R
(∫

f d Pn, f
)

= lim
Pn↓P

�(Pn) = �(P)

by (CfA). This proves (5.11). The second statement follows from Lemma 5.7. �
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The following lemma shows that the left continuous version of R is the left inverse of
the function γ as defined in 5.13 (for the definition and the properties of the left inverse
we refer to Föllmer and Schied 2004, section A.3).

LEMMA 5.7. Let � be any map � : P(R) → R ∪ {∞} and R : R × Cb(R) → R be de-
fined in (5.3). The left continuous version of R( ·, f ) can be written as:

R−(t, f ) := sup {R(s, f ) | s < t} = inf {m ∈ R | γ (m, f ) ≥ t} ,(5.14)

where γ : R × Cb(R) → R is given in (5.13).

Proof . Let the right-hand side (RHS) of equation (5.14) be denoted by

S(t, f ) := inf {m ∈ R | γ (m, f ) ≥ t} , (t, f ) ∈ R × Cb(R),

and note that S( ·, f ) is the left inverse of the increasing function γ ( ·, f ) and therefore
S( ·, f ) is left continuous.
Step I: To prove that R−(t, f ) ≥ S(t, f ) it is sufficient to show that for all s < t we have:

R(s, f ) ≥ S(s, f ).(5.15)

Indeed, if (5.15) is true

R−(t, f ) = sup
s<t

R(s, f ) ≥ sup
s<t

S(s, f ) = S(t, f ),

as both R− and S are left continuous in the first argument. Writing explicitly the inequality
(5.15)

inf
Q∈P

{
�(Q) |

∫
f d Q ≥ s

}
≥ inf {m ∈ R | γ (m, f ) ≥ s}

and letting Q ∈ P satisfying
∫

fdQ ≥ s, we see that it is sufficient to show the existence of
m ∈ R such that γ (m, f ) ≥ s and m ≤ �(Q). If �(Q) = −∞ then γ (m, f ) ≥ s for any m
and therefore S(s, f ) = R(s, f ) = −∞.

Suppose now that +∞ > �(Q) > −∞ and define m:= �(Q). As
∫

fdQ ≥ s we have:

γ (m, f ) := sup
Q∈P

{∫
f d Q | �(Q) ≤ m

}
≥ s.

Then m ∈ R satisfies the required conditions.
Step II: To obtain R−(t, f ) := sups<t R(s, f ) ≤ S(t, f ) it is sufficient to prove that, for

all s < t, R(s, f ) ≤ S(t, f ), that is

inf
Q∈P

{
�(Q) |

∫
f d Q ≥ s

}
≤ inf {m ∈ R | γ (m, f ) ≥ t} .(5.16)

Fix any s < t and consider any m ∈ R such that γ (m, f ) ≥ t. By the definition of γ , for
all ε > 0 there exists Qε ∈ P such that �(Qε) ≤ m and

∫
fdQε > t − ε. Take ε such that 0

< ε < t − s. Then
∫

fdQε ≥ s and �(Qε) ≤ m and (5.16) follows. �
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Complete duality: The complete duality in the class of quasi-convex monotone maps
on vector spaces was first obtained by Cerreia-Vioglio et al. (2011a). The following
proposition is based on the complete duality proved in Drapeau and Kupper (2010) for
maps defined on convex sets and therefore the results in Drapeau and Kupper (2010)
apply very easily in our setting. To obtain the uniqueness of the dual function in the
representation (5.11) we need to introduce the opportune class Rmax. Recall that P(R)
spans the space of countably additive signed measures on R, namely ca(R) and that the
first stochastic order corresponds to the cone

K =
{
μ ∈ ca |

∫
f dμ ≥ 0 ∀ f ∈ K◦

}
⊆ ca+,

where K◦ = −C−
b are the nondecreasing functions f ∈ Cb.

DEFINITION 5.8 (Drapeau and Kupper 2010). We denote by Rmax the class of func-
tions R : R × K◦ → R such that: (i) R is nondecreasing and left continuous in the
first argument,(ii) R is jointly quasi-concave, (iii) R(s, λ f ) = R( s

λ
, f ) for every f ∈ K◦,

s ∈ R and λ > 0, (iv) lims→−∞R(s, f ) = lims→−∞R(s, g) for every f , g ∈ K◦, (v)
R+(s, f ) = infs ′>s R(s ′, f ), is upper semicontinuous in the second argument.

PROPOSITION 5.9. Any σ (P(R), Cb)-lsc Risk Measure � : P(R) → R ∪ {∞} can be rep-
resented as in 5.11. The function R−(t, f ) given by 5.12 is unique in the class Rmax.

Proof . According to Definition 2.13 in Drapeau and Kupper (2010) a map � : P → R
is continuously extensible to ca if

Am + K ∩ P = Am,

where Am is acceptance set of level m and K is the ordering positive cone on ca. Observe
that μ ∈ ca+ satisfies μ(E) ≥ 0 for every E ∈ BR so that P + μ /∈ P for P ∈ Am and
μ ∈ K except if μ = 0. For this reason the lsc map � admits a lower semicontinuous
extension to ca and then theorem 2.19 in Drapeau and Kupper (2010) applies and we get
the uniqueness in the class Rmax

P (see definition 2.17 in Drapeau and Kupper 2010). In
addition, Rmax = Rmax

P follows exactly by the same argument at the end of the proof of
proposition 3.5 (Drapeau and Kupper 2010). Finally, we note that lemma C.2 in Drapeau
and Kupper (2010) implies that R− ∈ Rmax as γ (m, f ) is convex, positively homogeneous,
and lsc in the second argument. �

5.3. Computation of the Dual Function

The following proposition is useful to compute the dual function R−(t, f ) for the
examples considered in this paper.

PROPOSITION 5.10. Let {Fm}m∈R be a feasible family and suppose in addition that, for
every m, Fm(x) is increasing in x and limx→+∞Fm(x) = 1. The associated map � : P →
R ∪ {+∞} defined in (3.2) is well defined, (Mon), (Qco), and σ (P, Cb)-lsc and the
representation (5.11) holds true with R− given in (5.12) and

γ (m, f ) =
∫

f d F−m + F−m(−∞) f (−∞).(5.17)
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Proof . From equations (3.1) and (3.3) we obtain:

A−m = {
Q ∈ P(R) | FQ ≤ F−m

} = {Q ∈ P | �(Q) ≤ m}

so that

γ (m, f ) := sup
Q∈P

{∫
f d Q | �(Q) ≤ m

}
= sup

Q∈P

{∫
f d Q | FQ ≤ F−m

}
.

Fix m ∈ R, f ∈ C−
b and define the distribution function FQn (x) = F−m(x)1[−n,+∞) for

every n ∈ N. Obviously, FQn ≤ F−m, Qn ↓ and, taking into account (5.1),
∫

fdQn is
increasing. For any ε > 0, let Qε ∈ P satisfy FQε ≤ F−m and

∫
fdQε > γ (m, f ) − ε. Then:

FQε
n
(x) := FQε (x)1[−n,+∞) ↑ FQε , FQε

n
≤ FQn and∫

f d Qn ≥
∫

f d Qε
n ↑

∫
f d Qε > γ (m, f ) − ε.

We deduce that
∫

fdQn↑γ (m, f ) and, because∫
f d Qn =

∫ +∞

−n
f d F−m + F−m(−n) f (−n),

we obtain (5.17). �
EXAMPLE 5.11. Computation of γ (m, f ) for the �V@R.
Let m ∈ R and f ∈ C−

b . As Fm(x) = �(x)1(−∞,m)(x) + 1[m,+∞)(x), we compute from
(5.17):

γ (m, f ) =
∫ −m

−∞
f d� + (1 − �(−m)) f (−m) + �(−∞) f (−∞).(5.18)

We apply the integration by parts and deduce∫ −m

−∞
�d f = �(−m) f (−m) − �(−∞) f (−∞) −

∫ −m

−∞
f d�.

We can now substitute in equation (5.18) and get:

γ (m, f ) = f (−m) −
∫ −m

−∞
�d f = f (−∞) +

∫ −m

−∞
(1 − �)d f ,(5.19)

R−(t, f ) = −Hl
f (t − f (−∞)),(5.20)

where Hl
f is the left inverse of the function: m → ∫ m

−∞(1 − �)d f .
As a particular case, we match the results obtained in Drapeau and Kupper (2010)

for the V@R and the worst case risk measure. Indeed, from (5.19) and (5.20) we get:
R−(t, f ) = − f l ( t−λ f (−∞)

1−λ
), if �(x) = λ; R−(t, f ) = −f l(t), if �(x) = 0, where f l is the left

inverse of f .
If � is decreasing we may use Remark 4.3 to derive a simpler formula for γ . Indeed,

�V@R(P) = �Ṽ@R(P), where ∀m ∈ R,

F̃m(x) = �(m)1(−∞,m)(x) + 1[m,+∞)(x)
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and so from (5.19)

γ (m, f ) = f (−∞) + [1 − �(−m)]
∫ −m

−∞
d f = [1 − �(−m)] f (−m) + �(−m) f (−∞).
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