131 research outputs found

    Telemedicine for Delivery of Care in Frontotemporal Lobar Degeneration during COVID-19 Pandemic: Results from Southern Italy

    Get PDF
    Background: The COVID-19 pandemic is changing clinical practice in neurology, after the governments decided the introduction of social distancing and interruption of medical non-emergency services in many countries. Teleneurology is an effective tool for the remote evaluation of patients but its adoption for frontotemporal lobar dementia (FTD) is in a preliminary stage. Objective: We evaluated multidisciplinary assessment of patients with FTD using telehealth during the COVID-19 pandemic. Methods: All patients received a diagnosis of FTD during 2018-2019 according to international criteria. A structured questionnaire and Clinical Dementia Rating Scale (CDR)-FTD were used by the neurologist with patients and/or caregivers. Index symptoms of COVID-19 infection were searched. Results: Twenty-eight clinical interviews were completed with caregivers and four with both patients/caregivers. Most patients and caregivers were satisfied with the neurological interview and expressed their willingness to continue to be included in remote evaluation programs (90%). Fifty percent of patients experienced significant worsening of clinical picture and quality of life since the start of social distancing. The CDR-FTD scale revealed a significant worsening of behavior (p = 0.01) and language functions (p = 0.009), compared to the last in-person evaluation at the center. One patient presented index symptoms of COVID-19 infection and was confirmed to be positive for COVID-19 with pharyngeal swab. Conclusion: The study was conducted in Italy, one of the countries hit particularly hard by the COVID-19 pandemic, with interruption of all non-emergency medical services. Our study indicates that telemedicine is a valid tool to triage patients with FTD to increase practice outreach and efficiency

    Evolution of Human Memory B Cells From Childhood to Old Age

    Get PDF
    High quality medical assistance and preventive strategies, including pursuing a healthy lifestyle, result in a progressively growing percentage of older people. The population and workforce is aging in all countries of the world. It is widely recognized that older individuals show an increased susceptibility to infections and a reduced response to vaccination suggesting that the aged immune system is less able to react and consequently protect the organism. The SARS-CoV-2 pandemic is dramatically showing us that the organism reacts to novel pathogens in an age-dependent manner. The decline of the immune system observed in aging remains unclear. We aimed to understand the role of B cells. We analyzed peripheral blood from children (4-18 years); young people (23-60 years) and elderly people (65-91 years) by flow cytometry. We also measured antibody secretion by ELISA following a T-independent stimulation. Here we show that the elderly have a significant reduction of CD27dull memory B cells, a population that bridges innate and adaptive immune functions. In older people, memory B cells are mostly high specialized antigen-selected CD27bright. Moreover, after in vitro stimulation with CpG, B cells from older individuals produced significantly fewer IgM and IgA antibodies compared to younger individuals. Aging is a complex process characterized by a functional decline in multiple physiological systems. The immune system of older people is well equipped to react to often encountered antigens but has a low ability to respond to new pathogens

    A Non-parametric Approach to Measuring the \kpi{} Amplitudes in \dpkkpi{} Decay

    Get PDF
    Using a large sample of \dpkkpi{} decays collected by the FOCUS photoproduction experiment at Fermilab, we present the first non-parametric analysis of the \kpi{} amplitudes in \dpkkpi{} decay. The technique is similar to the technique used for our non-parametric measurements of the \krzmndk{} form factors. Although these results are in rough agreement with those of E687, we observe a wider S-wave contribution for the \ksw{} contribution than the standard, PDG \cite{pdg} Breit-Wigner parameterization. We have some weaker evidence for the existence of a new, D-wave component at low values of the Kπ+K^- \pi^+ mass.Comment: 13 pages 3 figure

    A Study of D0 --> K0(S) K0(S) X Decay Channels

    Full text link
    Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D0D^0 mesons into final states containing more than one KS0K^0_S. We present evidence for two Cabibbo favored decay modes, D0KS0KS0Kπ+D^0\to K^0_SK^0_S K^- \pi^+ and D0KS0KS0K+πD^0\to K^0_SK^0_S K^+ \pi^-, and measure their combined branching fraction relative to D0Kˉ0π+πD^0\to \bar{K} ^0\pi^+\pi^- to be Γ(D0KS0KS0K±π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^{\pm}\pi^{\mp})}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0106 ±\pm 0.0019 ±\pm 0.0010. Further, we report new measurements of Γ(D0KS0KS0KS0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^0_S)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0179 ±\pm 0.0027 ±\pm 0.0026, Γ(D0K0Kˉ0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0\bar{K} ^0)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0144 ±\pm 0.0032 ±\pm 0.0016, and Γ(D0KS0KS0π+π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_S\pi^+\pi^-)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0208 ±\pm 0.0035 ±\pm 0.0021 where the first error is statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte

    Study of Cabibbo Suppressed Decays of the Ds Charmed-Strange Meson involving a KS

    Full text link
    We study the decay of Ds meson into final states involving a Ks and report the discovery of Cabibbo suppressed decay modes Ds -> Kspi-pi+pi+ (179 +/- 36 events) and Ds -> Kspi+ (113 +/-26 events). The branching ratios for the new modes are Gamma(Ds -> Kspi-pi+pi+)/Gamma(Ds -> KsK-pi+pi+) = 0.18 +/- 0.04 +/- 0.05 and Gamma(Ds -> Kspi+)/Gamma(Ds -> KsK+) = 0.104 +/- 0.024 +/- 0.013.Comment: 11 pages, 6 figure

    The Kπ+K^-\pi^+ S-wave from the D+Kπ+π+D^+ \to K^-\pi^+\pi^+ decay

    Get PDF
    Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the Kπ+K^-\pi^+ S-wave amplitude from the decay D+Kπ+π+D^+ \to K^-\pi^+\pi^+. The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the Kπ+K^-\pi^+ system.Comment: 13 pages, 9 figures, submitted to Physics Letters

    Gammaherpesvirus Latency Accentuates EAE Pathogenesis: Relevance to Epstein-Barr Virus and Multiple Sclerosis

    Get PDF
    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases

    RTL551 Treatment of EAE Reduces CD226 and T-bet+ CD4 T Cells in Periphery and Prevents Infiltration of T-bet+ IL-17, IFN-γ Producing T Cells into CNS

    Get PDF
    Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1–5 daily injections of RTL551 (two-domain I-Ab covalently linked to MOG-35-55 peptide), but not the control RTL550 (“empty” two-domain I-Ab without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
    corecore