15,768 research outputs found

    Melt viscosities of lattice polymers using a Kramers potential treatment

    Full text link
    Kramers relaxation times τK\tau_{K} and relaxation times τR\tau_{R} and τG\tau_{G} for the end-to-end distances and for center of mass diffusion are calculated for dense systems of athermal lattice chains. τK\tau_{K} is defined from the response of the radius of gyration to a Kramers potential which approximately describes the effect of a stationary shear flow. It is shown that within an intermediate range of chain lengths N the relaxation times τR\tau_{R} and τK\tau_{K} exhibit the same scaling with N, suggesting that N-dependent melt-viscosities for non-entangled chains can be obtained from the Kramers equilibrium concept.Comment: submitted to: Journal of Chemical Physic

    An order (n) algorithm for the dynamics simulation of robotic systems

    Get PDF
    The formulation of an Order (n) algorithm for DISCOS (Dynamics Interaction Simulation of Controls and Structures), which is an industry-standard software package for simulation and analysis of flexible multibody systems is presented. For systems involving many bodies, the new Order (n) version of DISCOS is much faster than the current version. Results of the experimental validation of the dynamics software are also presented. The experiment is carried out on a seven-joint robot arm at NASA's Goddard Space Flight Center. The algorithm used in the current version of DISCOS requires the inverse of a matrix whose dimension is equal to the number of constraints in the system. Generally, the number of constraints in a system is roughly proportional to the number of bodies in the system, and matrix inversion requires O(p exp 3) operations, where p is the dimension of the matrix. The current version of DISCOS is therefore considered an Order (n exp 3) algorithm. In contrast, the Order (n) algorithm requires inversion of matrices which are small, and the number of matrices to be inverted increases only linearly with the number of bodies. The newly-developed Order (n) DISCOS is currently capable of handling chain and tree topologies as well as multiple closed loops. Continuing development will extend the capability of the software to deal with typical robotics applications such as put-and-place, multi-arm hand-off and surface sliding

    Short to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: a Bethe-Salpeter study

    Full text link
    We study using the Bethe-Salpeter formalism the excitation energies of the zincbacteriochlorinbacteriochlorin dyad, a paradigmatic photosynthetic complex. In great contrast with standard timedependent density functional theory calculations with (semi)local kernels, charge transfer excitations are correctly located above the intramolecular Q-bands transitions found to be in excellent agreement with experiment. Further, the asymptotic Coulomb behavior towards the true quasiparticle gap for charge transfer excitations at long distance is correctly reproduced, showing that the present scheme allows to study with the same accuracy intramolecular and charge transfer excitations at various spatial range and screening environment without any adjustable parameter.Comment: 5 pages, 2 figures, 1 tabl

    The analytic structure of 2D Euler flow at short times

    Full text link
    Using a very high precision spectral calculation applied to the incompressible and inviscid flow with initial condition ψ0(x1,x2)=cosx1+cos2x2\psi_0(x_1, x_2) = \cos x_1+\cos 2x_2, we find that the width δ(t)\delta(t) of its analyticity strip follows a ln(1/t)\ln(1/t) law at short times over eight decades. The asymptotic equation governing the structure of spatial complex-space singularities at short times (Frisch, Matsumoto and Bec 2003, J.Stat.Phys. 113, 761--781) is solved by a high-precision expansion method. Strong numerical evidence is obtained that singularities have infinite vorticity and lie on a complex manifold which is constructed explicitly as an envelope of analyticity disks.Comment: 19 pages, 14 figures, published versio

    An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics

    Full text link
    The lattice Boltzmann equation can be viewed as a discretization of the continuous Boltzmann equation. Because of this connection it has long been speculated that lattice Boltzmann algorithms might obey an H-theorem. In this letter we prove that usual nine-velocity models do not obey an H-theorem but models that do obey an H-theorem can be constructed. We consider the general conditions a lattice Boltzmann scheme must satisfy in order to obey an H-theorem and show why on a lattice, unlike the continuous case, dynamics that decrease an H-functional do not necessarily lead to a unique ground state.Comment: 6 pages, latex, no figures, accepted for publication in Europhys. Let
    corecore