8 research outputs found

    Développement de nouveaux catalyseurs hétérogènes par modification de polymères issus de la biomasse

    Full text link
    La siguiente tesis gira en torno al uso de biopolímeros renovables, ilustrado por la valorización de los residuos de cáscara de cáscara en el campo de la ciencia de los materiales y la catálisis y su tema se ocupa específicamente de tres aspectos: La asociación a nanoescala de quitosano con materiales en capas 2D Para generar estructuras novedosas, la optimización de la reactividad de la esfera externa de quitosano para estabilizar nanopartículas activas y el uso de quitosano pirolizado en condiciones específicas para generar materiales a base de grafeno. En la primera sección, la capacidad del quitosano para proporcionar grupos de amonio catiónicos explotados para proporcionar tanto quitosano-arcilla y óxido de quitosano-grafeno, por asociación de quitosano con arcilla y óxido de grafeno, respectivamente. Tanto las películas delgadas como las microesferas porosas se examinaron con especial énfasis en su estabilidad bajo condiciones de reacción agresivas. En la segunda sección, los grupos amina de quitosano nativo se funcionalizan con pequeños bloques de construcción para generar perlas porosas de quitosano terminadas en tiol y terminadas con imina. La presencia de estos diferentes ligandos permite afinar la coordinación de paladio alrededor de las microesferas durante su actividad catalítica para la catálisis de acoplamiento cruzado. La inmovilización de nanopartículas de cobre permite el acceso a un catalizador altamente activo para las reacciones de acoplamiento C-S. En la última sección, la grafitización con quitosano proporciona materiales de grafeno que contienen nitrógeno de alta calidad. Estas láminas se pueden decorar fácilmente con nanopartículas de cobre allí proporcionando los catalizadores activos para la oxidación de C-O y el acoplamiento propargylic A3 de tres componentes. El crecimiento racional del cobre a partir de la solución de quitosano grafítico permite el aislamiento de partículas orientadas. El crecimiento racional del cobre a partir de la solución de quitosano grafítico permite el aislamiento de partículas orientadas. Estos nuevos catalizadores exhiben actividad de pie para la síntesis de guanidina.The following thesis revolves around the use of renewable biopolymers, illustrated by valorisation of chitosan shell-fish waste in the field of materials science and catalysis and its subject deals specifically with three aspects : The association at the nanoscale of chitosan with layered 2-D materials to generate novel structures, the optimisation of chitosan's outer-sphere reactivity to stabilize active nanoparticules and the use of pyrolyzed chitosan under specific conditions to generate graphene-based materials. In the first section, the ability of chitosan to provide cationic ammonium groups exploited to provide both chitosan-clay and chitosan-graphene oxide, by association of chitosan with clay and graphene oxide, respectively. Both thin-films and porous microspheres were examined with a special emphasis to their stability under harsh reaction conditions. In the second section, the amine groups of native chitosan are functionalized with small building blocks to generate thiol-terminated and imine-terminated chitosan porous beads. The presence of these different ligands allows to tune the palladium coordination around the microspheres during their catalytic activity for cross-coupling catalysis. Immobilisation of copper nanoparticles enables access to highly active catalyst for C-S coupling reactions. In the last section, chitosan graphitisation provides high-quality nitrogen-containing graphene materials. These sheets can be easily decorated with copper nanoparticles there by providing active catalysts for C-O oxidation and three-components propargylic A3 coupling. The rational growth of copper from the graphitic chitosan solution enables the isolation of oriented particles. The rational growth of copper from the graphitic chitosan solution enables the isolation of oriented particles. These novel catalysts exhibits out standing activity for guanidine synthesis.La següent tesi gira entorn a l'ús de biopolímers renovables, il·lustrats per la valorització dels residus de closca de quitosà en el camp de la ciència dels materials i la catàlisi i el seu tema tracta específicament de tres aspectes: L'associació a la nanoescala de quitosà amb materials 2-D en capes per generar estructures novedoses, l'optimització de la reactivitat de l'esfera exterior de la quitosana per estabilitzar les nanopartícules actives i l'ús de quitosà piròlica en condicions específiques per generar materials basats en grafè. En la primera secció, la capacitat del quitosan per proporcionar grups amoni catiònics explotats per aportar tant òxid de quitosana com argila i quitosana, per associació de quitosà amb argila i òxid de grafeno, respectivament. Tant les pel·lícules primes com les microesferes poroses van ser examinades amb especial èmfasi en la seva estabilitat sota condicions de reacció dures. A la segona secció, els grups d'amina de quitosà nadiu es funcionalitzen amb petits blocs de construcció per generar comptes porosos de quitosà terminats en tiol i acabats amb imina. La presència d'aquests diferents lligands permet sintonitzar la coordinació del pal·liari entorn de les microesferes durant la seva activitat catalítica per a la catàlisi d'acoblament creuat. La immobilització de nanopartícules de coure permet l'accés a un catalitzador altament actiu per a les reaccions d'acoblament C-S. En l'últim apartat, la grafitisção de quitosà proporciona materials d'alta qualitat que contenen nitrogen. Aquests fulls es poden decorar fàcilment amb nanopartícules de coure allà proporcionant catalitzadors actius per a l'oxidació C-O i l'acoblament A3 propargílic de tres components. El creixement racional del coure a partir de la solució gràfica de quitosà permet l'aïllament de partícules orientades. El creixement racional del coure a partir de la solució gràfica de quitosà permet l'aïllament de partícules orientades. Aquests nous catalitzadors presenten activitat permanent per a la síntesi de guanidina.Frindy, S. (2018). Développement de nouveaux catalyseurs hétérogènes par modification de polymères issus de la biomasse [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98664TESI

    Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture

    Full text link
    Easy shaping of chitosan (CS) as porous self-standing nanofibrillar microspheres allows their use as a palladium carrier. Amino-groups on CS enable the modulation of Pd coordination, giving rise to three different support-catalyst interactions: weakly-coordinated Pd-CS in native CS, incarcerated Pd-CS-Glu in cross-linked CS and strongly-ligated Pd-CS-SH, obtained by the introduction of thiol arms in CS. These catalysts efficiently promote Sonogashira cross-coupling of a large library of functional substrates under mild and sustainable conditions (water-ethanol as solvent at 65 degrees C) and stand as recyclable, metal-scavenging catalytic systems.Frindy, S.; Primo Arnau, AM.; Lahcini, M.; Bousmina, M.; García Gómez, H.; El Kadib, A. (2015). Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture. Green Chemistry. 17(3):1893-1898. doi:10.1039/c4gc02175dS18931898173Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J., & Snieckus, V. (2012). Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 51(21), 5062-5085. doi:10.1002/anie.201107017Sehnal, P., Taylor, R. J. K., & Fairlamb, I. J. S. (2010). Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chemical Reviews, 110(2), 824-889. doi:10.1021/cr9003242Torborg, C., & Beller, M. (2009). Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis & Catalysis, 351(18), 3027-3043. doi:10.1002/adsc.200900587Hartwig, J. F. (2008). Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature, 455(7211), 314-322. doi:10.1038/nature07369Loska, R., Volla, C. M. R., & Vogel, P. (2008). Iron-Catalyzed Mizoroki-Heck Cross-Coupling Reaction with Styrenes. Advanced Synthesis & Catalysis, 350(18), 2859-2864. doi:10.1002/adsc.200800662Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct C−H Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198wCzaplik, W. M., Mayer, M., Cvengroš, J., & von Wangelin, A. J. (2009). Coming of Age: Sustainable Iron-Catalyzed Cross-Coupling Reactions. ChemSusChem, 2(5), 396-417. doi:10.1002/cssc.200900055Fürstner, A., Leitner, A., Méndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190tBarluenga, J., & Valdés, C. (2011). Tosylhydrazones: New Uses for Classic Reagents in Palladium-Catalyzed Cross-Coupling and Metal-Free Reactions. Angewandte Chemie International Edition, 50(33), 7486-7500. doi:10.1002/anie.201007961Yin, & Liebscher, J. (2007). Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chemical Reviews, 107(1), 133-173. doi:10.1021/cr0505674Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473Weck, M., & Jones, C. W. (2007). Mizoroki−Heck Coupling Using Immobilized Molecular Precatalysts:  Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes. Inorganic Chemistry, 46(6), 1865-1875. doi:10.1021/ic061898hWEBB, J., MACQUARRIE, S., MCELENEY, K., & CRUDDEN, C. (2007). Mesoporous silica-supported Pd catalysts: An investigation into structure, activity, leaching and heterogeneity. Journal of Catalysis, 252(1), 97-109. doi:10.1016/j.jcat.2007.09.007Garrett, C. E., & Prasad, K. (2004). The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd-Catalyzed Reactions. Advanced Synthesis & Catalysis, 346(8), 889-900. doi:10.1002/adsc.200404071Glasspoole, B. W., Webb, J. D., & Crudden, C. M. (2009). Catalysis with chemically modified mesoporous silicas: Stability of the mesostructure under Suzuki–Miyaura reaction conditions. Journal of Catalysis, 265(2), 148-154. doi:10.1016/j.jcat.2009.04.020Modak, A., Mondal, J., & Bhaumik, A. (2012). Pd-grafted periodic mesoporous organosilica: an efficient heterogeneous catalyst for Hiyama and Sonogashira couplings, and cyanation reactions. Green Chemistry, 14(10), 2840. doi:10.1039/c2gc35820dMacquarrie, D. J., & Hardy, J. J. E. (2005). Applications of Functionalized Chitosan in Catalysis†. Industrial & Engineering Chemistry Research, 44(23), 8499-8520. doi:10.1021/ie050007vA. El Kadib , ChemSusChem20158217244El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740El Kadib, A., & Bousmina, M. (2012). Chitosan Bio-Based Organic-Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 18(27), 8264-8277. doi:10.1002/chem.201104006Kadib, A. E., Bousmina, M., & Brunel, D. (2014). Recent Progress in Chitosan Bio-Based Soft Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 308-331. doi:10.1166/jnn.2014.9012Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137aValentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109fPrimo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gNgah, W. S. W., Ab Ghani, S., & Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443-450. doi:10.1016/j.biortech.2004.05.022El Hankari, S., El Kadib, A., Finiels, A., Bouhaouss, A., Moreau, J. J. E., Crudden, C. M., … Hesemann, P. (2011). SBA-15-Type Organosilica with 4-Mercapto-N,N-bis-(3-Si-propyl)butanamide for Palladium Scavenging and Cross-Coupling Catalysis. Chemistry - A European Journal, 17(32), 8984-8994. doi:10.1002/chem.201002190Crudden, C. M., Sateesh, M., & Lewis, R. (2005). Mercaptopropyl-Modified Mesoporous Silica:  A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions. Journal of the American Chemical Society, 127(28), 10045-10050. doi:10.1021/ja0430954McEleney, K., Crudden, C. M., & Horton, J. H. (2009). X-ray Photoelectron Spectroscopy and the Auger Parameter As Tools for Characterization of Silica-Supported Pd Catalysts for the Suzuki−Miyaura Reaction. The Journal of Physical Chemistry C, 113(5), 1901-1907. doi:10.1021/jp808837kRoy, A. S., Mondal, J., Banerjee, B., Mondal, P., Bhaumik, A., & Islam, S. M. (2014). Pd-grafted porous metal–organic framework material as an efficient and reusable heterogeneous catalyst for C–C coupling reactions in water. Applied Catalysis A: General, 469, 320-327. doi:10.1016/j.apcata.2013.10.017Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012Kühbeck, D., Saidulu, G., Reddy, K. R., & Díaz, D. D. (2012). Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem., 14(2), 378-392. doi:10.1039/c1gc15925aKhalafi-Nezhad, A., & Mohammadi, S. (2014). Chitosan supported ionic liquid: a recyclable wet and dry catalyst for the direct conversion of aldehydes into nitriles and amides under mild conditions. RSC Advances, 4(27), 13782. doi:10.1039/c3ra43440kEl Kadib, A., McEleney, K., Seki, T., Wood, T. K., & Crudden, C. M. (2011). Cross-Coupling in the Preparation of Pharmaceutically Relevant Substrates using Palladium Supported on Functionalized Mesoporous Silicas. ChemCatChem, 3(8), 1281-1285. doi:10.1002/cctc.20110002

    Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres

    Full text link
    [EN] Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS < CS-MMT < CS-HNT < CS-SP. Irrespective to the clay microstructure, an improvement in the mechanical properties of the chitosan-clay films has been substantiated with CS-SP reaching the highest value at 5% clay loading. While clay addition provides a way to resist the shrinkage occurring for native chitosan, the enhanced hydrophilicity associated to the water content affects the efficacy of the CO2 super-critical drying as the most hydrophilic CS-SP microspheres face the highest shrinkage, resulting in a lowest specific surface area compared to CS-HNT and CS-MMT. Chitosan-clay exhibits enhanced thermal properties with the degradation delayed in the order CS < CS-MMT < CS-HNT < CS-SP. Under acidic environment, a longevity has been substantiated for chitosan-clay compared to native chitosan, evidencing the beneficial protective effect of the clay particulates for the biopolymer. However, under hydrothermal treatment, the presence of clay was found to be detrimental to the material stability as a significant shrinkage occurs in hybrid CS-clay microspheres, which is attributed again to their increased hydrophilicity compared to the native polymeric microspheres. In this framework, a peculiar behavior was observed for CS-MMT, with the microspheres standing both against contraction during CO2 gel drying and under hydrothermal conditions. The knowledge gained from this rational design will constitute a guideline toward the preparation of ultra-stable, practically-optimized food-packaging films and commercially scalable porous bio-based adsorbents.S. F thanks MAScIR foundation, CNRST and Erasmus Mundus-Maghreb & Egypt- EMMAG.Frindy, S.; Primo Arnau, AM.; Qaiss, AEK.; Bouhfid, R.; Lahcini, M.; García Gómez, H.; Bousmina, M.... (2016). Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. Carbohydrate Polymers. 146:353-361. doi:10.1016/j.cabpel.2016.03.022S35336114

    Synthesis of novel α-Fe2O3-Bi2S3-Gr for efficient photocatalytic degradation of environmental pollutants under visible-LED light irradiation

    No full text
    Funding Information: Dr. Sana Frindy is very thankful to MAA- JA VESITEKNIIKAN TUKI (No.38881) which funded her research project entitled “Environmental purification by photo-catalysis using graphene-based materials from biomass waste”. Prof. Yuri Park is gratefully acknowledged for her valuable discussions. Publisher Copyright: © 2021α-Fe2O3-Bi2S3 nanorods was successfully synthesized via a hydrothermal route with incorporation of graphene obtained from the pyrolysis of alginate, and was employed as a catalyst of the degradation of benzotriazole (BTA) in a photo-Fenton process. Due to the unique combination of graphene and the binary α-Fe2O3-Bi2S3 nanorod, the sample with 3 wt% graphene loading shows a high catalytic activity of 98% of BTA conversion under LED-visible light. The quenched free radicals are detected with an Electron Spin Resonance (ESR) technique, and the results indicate that hydroxyl radical •OH contributed to the BTA degradation reaction. A mechanism is proposed. Furthermore, the reusability of the catalyst was examined and the catalyst showed high activity over four cyclic runs.Peer reviewe

    Synthesis of graphene-based biopolymer tio2 electrodes using pyrolytic direct deposition method and its catalytic performance

    No full text
    The traditional methods used to synthesize graphene layers over semiconductors are chemical-based methods. In the present investigation, a novel photoelectroactive electrode was synthesized using a chitosan biopolymer without the usage of chemicals. A chitosan-biopolymer layer over the surface of TiO2 was generated by electrodeposition. Furthermore, the pyrolysis method was used for the conversion of a biopolymer into graphene layers. The catalytic activity of the fabricated electrodes was investigated by the photo-electro-Fenton (PEF) process to oxidize chloramphenicol and nadolol pharmaceutical drugs in wastewater, remove metals (scandium, neodymium, and arsenic) and degrade real municipal wastewater. The PEF operational parameters (pH, voltage, reaction time, and Fenton catalytic dose) were optimized for the overall degradation of chloramphenicol and nadolol pharmaceutical drugs in wastewater. It was observed that at the optimum process operational parameters it took 40 min to degrade chloramphenicol and nadolol pharmaceutical drugs in wastewater. It was proved that biopolymer-based photoelectroactive novel electrodes render good catalytic activity. Furthermore, the reusability study of fabricated electrodes showed excellent storage and self-healing properties.Peer reviewe

    Isotropic and Oriented Copper Nanoparticles Supported on Graphene as Aniline Guanylation Catalysts

    Full text link
    Adsorption of copper nanoparticles (NPs) on preformed graphene (G) affords an efficient catalyst for the nucleophilic addition of anilines to N,N'-dialkylcarbodiimides to form the corresponding guanidines. Cu/G exhibits a wide scope in promoting guanylation of different substituted anilines and carbodiimides and outperforms Cu nanoparticles supported on carbon nanotubes, active carbon, layered clay, TiO2 and CeO2. Importantly, the performance of the catalyst could be increased by 3 orders of magnitude, reaching TONs of 5.95 x 10(4) and TOFs of 9.9 x 10(2) h(-1) by using as catalysts films of 1.1.1 facet oriented Cu nanoplatelets (3-4 nm thickness and 20-40 nm lateral dimensions) having a strong interaction with G. This enhancement of the catalytic activity derives from the preferential facet orientation of Cu nano platelets and their strong grafting on G. These catalytic results show the potential that G offers as support for metal NPs for the development of highly active recoverable heterogeneous catalysts.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2015-69153-C2-R1) is gratefully acknowledged. S.F. thanks the Erasmus Mundus-Maghreb & Egypte (EMMAG) for a fellowship to support her stay at Valencia. Support to S.F. by the National Center for Scientific and Technical Research of Morocco (CNRST) is also acknowledged. A.P. also thanks the Spanish Ministry of Economy and Competitiveness for a Ramon y Cajal research contract.Frindy, S.; El Kadib, A.; Lahcini, M.; Primo Arnau, AM.; García Gómez, H. (2016). Isotropic and Oriented Copper Nanoparticles Supported on Graphene as Aniline Guanylation Catalysts. ACS Catalysis. 6(6):3863-3869. https://doi.org/10.1021/acscatal.6b00995S386338696

    A metal-free carbon catalyst for oxidative dehydrogenation of aryl cyclohexenes to produce biaryl compounds

    No full text
    We are grateful to Jane ja Aatos Erkon Säätiö (Jane and Aatos Erkko Foundation) for the financial support to “BioCat” project (J.H. & Y.L.).A metal-free route based on a carbon catalyst to synthesize biphenyls through oxidative dehydrogenation (ODH) of phenyl cyclohexene has been investigated. Among the samples examined, an air-oxidized active carbon exhibits the best activity with a 9.1 × 10−2 h−1 rate constant, yielding 74% biphenyl in 28 h at 140 °C under five bar O2 in anisole. The apparent activation energy is measured as 54.5 kJ⋅mol−1. The extended reaction scope, consisting of 15 differently substituted phenyl cyclohexenes, shows the wide applicability of the proposed method. The catalyst’s good recyclability over six runs suggests this ODH method as a promising route to access the biaryl compounds. In addition, the reaction mechanism is investigated with a combination of X-ray photoelectron spectroscopy, functional group blocking, and model compounds of carbon catalysts and is proposed to be based on the redox cycle of the quinoidic groups on the carbon surface. Additional experiments prove that the addition of the catalytic amount of acid (methanesulfonic acid) accelerates the reaction. In addition, Hammett plot examination suggests the formation of a carbonium intermediate, and its possible structure is outlined.Peer reviewe
    corecore