8 research outputs found
Experimentally Accessible Witnesses of Many-Body Localization
The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, densityâdensity correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models
Many-Body Localization Implies that Eigenvectors are Matrix-Product States
The phenomenon of many-body localization has received a lot of attention
recently, both for its implications in condensed-matter physics of allowing
systems to be an insulator even at nonzero temperature as well as in the
context of the foundations of quantum statistical mechanics, providing
examples of systems showing the absence of thermalization following out-of-
equilibrium dynamics. In this work, we establish a novel link between
dynamical propertiesâa vanishing group velocity and the absence of
transportâwith entanglement properties of individual eigenvectors. For systems
with a generic spectrum, we prove that strong dynamical localization implies
that all of its many-body eigenvectors have clustering correlations. The same
is true for parts of the spectrum, thus allowing for the existence of a
mobility edge above which transport is possible. In one dimension these
results directly imply an entanglement area law; hence, the eigenvectors can
be efficiently approximated by matrix-product states
Towards experimental quantum-field tomography with ultracold atoms
The experimental realization of large-scale many-body systems in atomic-
optical architectures has seen immense progress in recent years, rendering
full tomography tools for state identification inefficient, especially for
continuous systems. To work with these emerging physical platforms, new
technologies for state identification are required. Here we present first
steps towards efficient experimental quantum-field tomography. Our procedure
is based on the continuous analogues of matrix-product states, ubiquitous in
condensed-matter theory. These states naturally incorporate the locality
present in realistic physical settings and are thus prime candidates for
describing the physics of locally interacting quantum fields. To
experimentally demonstrate the power of our procedure, we quench a one-
dimensional Bose gas by a transversal split and use our method for a partial
quantum-field reconstruction of the far-from-equilibrium states of this
system. We expect our technique to play an important role in future studies of
continuous quantum many-body systems
Ein Einblick mittels Quanteninformationstheorie
This thesis investigates quantum-many body systems out of equilibrium in a
variety of physically relevant and intriguing settings. It provides an
overview of the recent developments in this field and based on the authorâs
recent review illuminates many interesting connections and summarises open
questions. In this general framework, the various results of the author are
embedded. While they often rely on advanced mathematics, great care is taken
to present them in an intuitive way and most technical material is discussed
separately in appendices. In the context of equilibration, work created as
part of this thesis is able to capture the Gaussification of correlated
initial states for a large class of free models. This allows to significantly
extend equilibration results of free models, which are of crucial importance,
as they provide reasonable relaxation time scales and immediately connect to
our physical intuition in terms of ballistic spreading. Building on two
surprising connections between static and dynamic features of Hamiltonians,
which in general are hard to obtain, the results of this thesis further
greatly contribute to the recent debate on the true nature of quantum many-
body localisation. For those interacting models, we derive the localised
structure of eigenstates from a dynamical suppression of information
propagation on the low-energy sector. Further, we show how a non-degenerate
spectrum, indicating the presence of interactions, and the existence of an
approximately local constant of motion are sufficient to show information
propagation, if arbitrary energies are allowed. In the context of quantum
phase transitions, we continue such connections between static and dynamic
features. We specifically investigate the Mott-superfluid transition of the
Bose-Hubbard model and ask to what extent it has a universal dynamical
signature. In a joint experimental, numerical and analytical effort, complex
behaviour of these dynamics is uncovered, thus challenging the common believe
that the Kibble-Zurek mechanism is sufficient to fully capture such
transitions. We embed such experimental investigation in the recent debate on
quantum simulators, which give the exciting perspective of solving notoriously
and even provably hard problems efficiently in the laboratory. For such
devices, we argue that the final read-out of the results is an important out-
standing problem to be solved. We approach this issue in the case of a
continuous quantum field, in which the notion of reconstructing the quantum
state is even conceptually unclear. Based on tensor network methods, we
demonstrate that in an experiment of ultra-cold atoms in a continuous setup,
states can nevertheless efficiently be obtained. Thus, this thesis constitutes
not only an important review of the field of quantum many-body systems out of
equilibrium, but, using advanced mathematical and numerical tools, has
significantly contributed to our understanding of various important out-
standing questions in interacting many-body systems.In dieser Doktorarbeit werden Quantenvielteilchensysteme auĂerhalb des
Equilibriums in verschiedenem physikalischen Kontext untersucht. Aufbauend auf
einem Ăbersichtsartikel zu diesem Feld, an dem der Autor dieser Arbeit
beteiligt war, werden wichtige Entwicklungen dargestellt, wesentliche
Querverbindungen gezogen und offene Fragen prÀsentiert. In diesen Rahmen sind
die analytischen und numerischen Arbeiten des Autors eingebettet. Trotz ihrer
teils tiefgehend mathematischen Natur wurde groĂer Wert darauf gelegt, diese
auf intuitive Weise zu prÀsentieren. Technische Details werden daher separat
in AnhÀngen diskutiert. Im Bereich der Equilibrierung gelang es zu zeigen,
dass korrelierte AnfangszustÀnde durch die Entwicklung unter freien
fermionischen Modellen lokal gegen einen GauĂschen Zustand streben. Damit
können GauĂsche Equilibrierungsergebnisse verallgemeinert werden, woraus sich
wichtige Intuition fĂŒr den wechselwirkenden Fall ableiten lĂ€sst. Aufbauend auf
zwei unerwarteten Verbindungen zwischen statischen und dynamischen
Eigenschaften von Hamiltonoperatoren, welche im Allgemeinen schwer zu
etablieren sind, trÀgt diese Arbeit signifikant zur Debatte bei, wie
Vielteilchenlokalisierung zu fassen ist. Es wird gezeigt, dass
Lokalisierungseigenschaften von EigenzustÀnden aus einer dynamischen
Lokalisierung unterhalb einer Energieschranke hergeleitet werden können.
DarĂŒber hinaus wird hergeleitet, dass die Anwesenheit einer lokalen
ErhaltunsgröĂe zusammen mit einem nichtentarteten Spektrum ausreicht, um
dynamische Ausbreitung von Information zu garantieren. Im Bereich der
QuantenphasenĂŒbergĂ€nge wird der Zusammenhang von dynamischen und statischen
Eigenschaften wechselwirkender Modelle tiefergehend untersucht. In einer
vereinten experimentellen, analytischen und numerischen Arbeit wird die
Dynamik des PhasenĂŒbergangs des Bose-Hubbard Modells analysiert. Hierbei tritt
komplexes Verhalten zu Tage, das bisher weder durch den Kibble-Zurek
Mechanismus, noch durch andere Theorien erklÀrt werden kann. Diese
experimentelle Untersuchung wird in den weiter gefassten Rahmen von
Quantensimulatoren eingebettet. Solche Simulatoren zeigen eine Perspektive
auf, harte quantenmechanische Probleme im Labor effizient zu lösen. Der finale
Schritt einer solchen Quantensimulation ist die Rekonstruktion der
Simulationsergebnisse. Wir untersuchen diesen fĂŒr ultrakalte Atome in einer
kontinuierlichen Falle. Ausgehend von Tensornetzwerkmethoden zeigen wir, dass
(trotz der Schwierigkeiten kontinuierlicher Architekturen) effiziente
Quantenfeldtomographie durchgefĂŒhrt werden kann und wir demonstrieren diese
darĂŒber hinaus auch direkt experimentell. Zusammenfassend gibt diese Arbeit
nicht nur einen umfassenden Ăberblick ĂŒber Quantenvielteilchensysteme
auĂerhalb des Gleichgewichts, sondern nutzt darĂŒber hinaus elaborierte
mathematische Methoden und numerische Simulationen, um unser VerstÀndnis von
Vielteilchensystemen signifikant zu erweitern
Experimentally Accessible Witnesses of Many-Body Localization
The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, density–density correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models
Singularity methods for magnetohydrodynamics
Singular solutions for linearized MHD equations based on Oseen approximations have been obtained such as Oseenslet. Oseenrotlet, mass source, etc. By suitably distributing these singular solutions along the axes of symmetry of an axially symmetric bodies, we derive the approximate values for the velocity fields, the force and the momentum for the case of translational and rotational motions of such bodies in a steady flow of an incompressible viscous and magnetized fluid