794 research outputs found

    Removable Partial Dentures for Older Adults.

    Get PDF
    Improvements in oral health including increased retention of natural teeth have given rise to a partially dentate older population. Replacement of missing natural teeth is important to improve function, aesthetics and quality of life for this patient group. A variety of options are available to replace missing teeth in partially dentate older adults, including fixed, removable and implant retained prostheses. This article will discuss the provision of removable partial dentures including treatment planning and denture design. When planning removable partial dentures, careful attention must be paid to stabilising the patient prior to delivering any prosthesis. Partial dentures should be designed to minimise the potential for plaque accumulation with carefully designed metal based frameworks. Acrylic resin can also be utilised with attention to detail to minimise the risk of damage to delicate supporting tissues. Removable dentures have the advantage that they can be readily added to in the event of further tooth loss which may be particularly relevant for older adults. Partial dentures which optimise support, retention and stability can function very successfully and significantly improve patients' oral health related quality of life

    Identification of key residues that regulate the interaction of kinesins with microtubule ends

    Get PDF
    Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end‐residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin‐13, which depolymerises microtubules, are introduced into Kinesin‐1, a walking kinesin with no effect on microtubule dynamics, the end‐residence time is increased up to several‐fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding

    Mobile information access in the real world: A story of three wireless devices

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2008 ElsevierThe importance of the user perspective to the wireless information access experience cannot be understated: simply put, users will not indulge in devices that are perceived to be difficult to use and in technologies that do not offer quality infotainment – combined information and entertainment – content. In this paper, we investigate the impact that mobile devices have on the user wireless infotainment access experience in practice. To this end, we have undertaken an empirical study placed in a ‘real-world’ setting, in which participants undertook typical infotainment access tasks on three different wireless-enabled mobile devices: a laptop, a personal digital assistant and a head mounted display device. Results show that, with the exception of participants’ level of self-consciousness when using such devices in public environments, the user wireless information access experience is generally unaffected by device type. Location was shown, though, to be a significant factor when users engage in tasks such as listening to online music or navigation. Whilst the interaction between device and environment was found to influence entertainment-related tasks in our experiments, the informational ones were not affected. However, the interaction effects between device and user type was found to affect both types of tasks. Lastly, a user’s particular computing experience was shown to influence the perceived ease of wireless information access only in the case of online searching, irrespective of whether this is done for primarily informational purposes or entertainment ones

    Enabling internal electronic circuitry within additively manufactured metal structures - The effect and importance of inter-laminar topography

    Get PDF
    Purpose: This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and insulators) at the interlaminar interface of parts during manufacture to allow the integration of functional and optimal electrical circuitries inside dense metallic objects without detrimental effect on the overall mechanical integrity. This holds promise to release transformative device functionality and applications of smart metallic devices and products. Design/methodology/approach: To ensure the proper electrical insulation between the printed conductors and metal matrices, an insulation layer with sufficient thickness is required to accommodate the rough interlaminar surface which is inherent to the UAM process. This in turn increases the total thickness of printed circuitries and thereby adversely affects the integrity of the UAM part. A specific solution is proposed to optimise the rough interlaminar surface through deforming the UAM substrates via sonotrode rolling or UAM processing. Findings: The surface roughness (Sa) could be reduced from 4.5 to 4.1 µm by sonotrode rolling and from 4.5 to 0.8 µm by ultrasonic deformation. Peel testing demonstrated that sonotrode-rolled substrates could maintain their mechanical strength, while the performance of UAM-deformed substrates degraded under same welding conditions ( approximately 12 per cent reduction compared with undeformed substrates). This was attributed to the work hardening of deformation process which was identified via dual-beam focussed ion beam–scanning electron microscope investigation. Originality/value: The sonotrode rolling was identified as a viable methodology in allowing printed electrical circuitries in UAM. It enabled a decrease in the thickness of printed electrical circuitries by ca. 25 per cent

    Customisable 3D printed microfluidics for integrated analysis and optimisation

    Get PDF
    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100–500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM–38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels

    Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target

    Get PDF
    The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis

    Solid-state additive manufacturing for metallized optical fiber integration

    Get PDF
    The formation of smart, Metal Matrix Composite (MMC) structures through the use of solid-state Ultrasonic Additive Manufacturing (UAM) is currently hindered by the fragility of uncoated optical fibers under the required processing conditions. In this work, optical fibers equipped with metallic coatings were fully integrated into solid Aluminum matrices using processing parameter levels not previously possible. The mechanical performance of the resulting manufactured composite structure, as well as the functionality of the integrated fibers, was tested. Optical microscopy, Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) analysis were used to characterize the interlaminar and fiber/matrix interfaces whilst mechanical peel testing was used to quantify bond strength. Via the integration of metallized optical fibers it was possible to increase the bond density by 20–22%, increase the composite mechanical strength by 12–29% and create a solid state bond between the metal matrix and fiber coating; whilst maintaining full fiber functionality

    The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition

    Get PDF
    Kinesins that influence the dynamics of microtubule growth and shrinkage require the ability to distinguish between the microtubule end and the microtubule lattice. The microtubule depolymerizing kinesin MCAK has been shown to specifically recognize the microtubule end. This ability is key to the action of MCAK in regulating microtubule dynamics. We show that the a4-helix of the motor domain is crucial to microtubule end recognition. Mutation of the residues K524, E525 and R528, which are located in the C-terminal half of the a4-helix, specifically disrupts the ability of MCAK to recognize the microtubule end. Mutation of these residues, which are conserved in the kinesin-13 family and discriminate members of this family from translocating kinesins, impairs the ability of MCAK to discriminate between the microtubule lattice and the microtubule end

    The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization

    Get PDF
    Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions. © 2011 European Molecular Biology Organization | All Rights Reserved

    The cessation in pregnancy incentives trial (CPIT): study protocol for a randomized controlled trial

    Get PDF
    Background: Seventy percent of women in Scotland have at least one baby, making pregnancy an opportunity to help most young women quit smoking before their own health is irreparably compromised. By quitting during pregnancy their infants will be protected from miscarriage and still birth as well as low birth weight, asthma, attention deficit disorder and adult cardiovascular disease. In the UK, the NICE guidelines: 'How to stop smoking in pregnancy and following childbirth' (June 2010) highlighted that little evidence exists in the literature to confirm the efficacy of financial incentives to help pregnant smokers to quit. Its first research recommendation was to determine: Within a UK context, are incentives an acceptable, effective and cost-effective way to help pregnant women who smoke to quit? <p/>Design and Methods: This study is a phase II exploratory individually randomised controlled trial comparing standard care for pregnant smokers with standard care plus the additional offer of financial voucher incentives to engage with specialist cessation services and/or to quit smoking during pregnancy. Participants (n=600) will be pregnant smokers identified at maternity booking who when contacted by specialist cessation services agree to having their details passed to the NHS Smokefree Pregnancy Study Helpline to discuss the trial. The NHS Smokefree Pregnancy Study Helpline will be responsible for telephone consent and follow-up in late pregnancy. The primary outcome will be self reported smoking in late pregnancy verified by cotinine measurement. An economic evaluation will refine cost data collection and assess potential cost-effectiveness while qualitative research interviews with clients and health professionals will assess the level of acceptance of this form of incentive payment. Research questions What is the likely therapeutic efficacy? Are incentives potentially cost-effective? Is individual randomisation an efficient trial design without introducing outcome bias? Can incentives be introduced in a way that is feasible and acceptable? <p/>Discussion: This phase II trial will establish a workable design to reduce the risks associated with a future definitive phase III multicentre randomised controlled trial and establish a framework to assess the costs and benefits of financial incentives to help pregnant smokers to quit
    corecore