83 research outputs found

    Pulling adsorbed polymers from surfaces with the AFM: stick versus slip, peeling versus gliding

    Full text link
    We consider the response of an adsorbed polymer that is pulled by an AFM within a simple geometric framework. We separately consider the cases of i) fixed polymer-surface contact point, ii) sticky case where the polymer is peeled off from the substrate, and iii) slippery case where the polymer glides over the surface. The resultant behavior depends on the value of the surface friction coefficient and the adsorption strength. Our resultant force profiles in principle allow to extract both from non-equilibrium force-spectroscopic data.Comment: 6 pages, 3 figures; accepted for publication in Europhys. Lett., http://www.edpsciences.org/journal/index.cfm?edpsname=ep

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF

    Polymers and biopolymers at interfaces

    Get PDF
    This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF
    We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

    Get PDF
    We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly aμ(gμ2)/2a_\mu \equiv (g_\mu-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ωa\omega_a between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω~p{\tilde{\omega}'^{}_p} in a spherical water sample at 34.7^{\circ}C. The ratio ωa/ω~p\omega_a / {\tilde{\omega}'^{}_p}, together with known fundamental constants, determines aμ(FNAL)=116592040(54)×1011a_\mu({\rm FNAL}) = 116\,592\,040(54)\times 10^{-11} (0.46\,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ+\mu^+ and μ\mu^-, the new experimental average of aμ(Exp)=116592061(41)×1011a_\mu({\rm Exp}) = 116\,592\,061(41)\times 10^{-11} (0.35\,ppm) increases the tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure

    Adsorption energies of single charged polymers

    No full text
    We peel off cationic and anionic polyelectrolytes from different substrates (cationic, hydrophobic and metallic) with the atomic force microscope (AFM). By varying the salt concentration, the measured plateau forces can be separated into electrostatic and non-electrostatic contributions to the adsorption energy. Surprisingly, i) the non-electrostatic contribution dominates even for highly charged substrates, and ii) hydrophobic substrates act like negatively charged surfaces. In the theoretical modeling the surface-induced charge regulation of the polymers has to be included
    corecore