1,208 research outputs found

    Impact of Pilots’ Mental Health on Aviation Safety

    Get PDF
    In aviation, safety is the highest priority. Several recent aviation accidents and incidents have brought the mental health issue of the pilots to the forefront of aviation safety. To protect the safety of crew members and passengers, the Federal Aviation Administration (FAA) and other civil aviation authorities across the globe strictly regulate the status of pilots’ physical and mental health. The purpose of this paper is three-folded. First, it describes the significance of pilots’ mental health and its impact on aviation safety. Second, it explores the state of pilots’ current mental health and the causes and side-effects of mental health-related issues. Third, it reviews relevant regulations currently in place and summarizes available resources established by the FAA and civil aviation authorities to support pilots’ mental health. The paper concludes by providing useful recommendations beneficial for the pilots, regulatory agencies, and general public interested in getting a better understanding of mental health-related issues in high-stress professions

    Filtering genetic variants and placing informative priors based on putative biological function

    Get PDF
    High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure

    Schroedinger operators with singular interactions: a model of tunneling resonances

    Full text link
    We discuss a generalized Schr\"odinger operator in L2(Rd),d=2,3L^2(\mathbb{R}^d), d=2,3, with an attractive singular interaction supported by a (d1)(d-1)-dimensional hyperplane and a finite family of points. It can be regarded as a model of a leaky quantum wire and a family of quantum dots if d=2d=2, or surface waves in presence of a finite number of impurities if d=3d=3. We analyze the discrete spectrum, and furthermore, we show that the resonance problem in this setting can be explicitly solved; by Birman-Schwinger method it is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page

    Error analysis of discontinuous Galerkin discretizations of a class of linear wave-type problems

    Get PDF
    In this paper we consider central fluxes discontinuous Galerkin space discretizations of a general class of wave-type equations of Friedrichs’ type. This class includes important examples such as Maxwell’s equations and wave equations. We prove an optimal error bound which holds under suitable regularity assumptions on the solution. Our analysis is performed in a framework of evolution equations on a Hilbert space and thus allows for the combination with various time integration schemes

    Electronic structure of periodic curved surfaces -- topological band structure

    Full text link
    Electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically formulated and numerically calculated. We focus on minimal surfaces because they are not only mathematically elegant (with the surface characterized completely in terms of "navels") but represent the topology of real systems such as zeolites and negative-curvature fullerene. The band structure turns out to be primarily determined by the topology of the surface, i.e., how the wavefunction interferes on a multiply-connected surface, so that the bands are little affected by the way in which we confine the electrons on the surface (thin-slab limit or zero thickness from the outset). Another curiosity is that different minimal surfaces connected by the Bonnet transformation (such as Schwarz's P- and D-surfaces) possess one-to-one correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to [email protected]

    The preliminary design of a scaled Composite UHBR Fan for a wind tunnel test campaign

    Get PDF
    AbstractThe ambition of the CA3ViAR project is to design an open test case fan that experiences instability mechanisms, which are representative for ultra-high bypass ratio (UHBR) fans of civil aircrafts, and to perform a comprehensive experimental investigation to measure aerodynamic, aeroelastic and aeroacoustic performance in a wide range of operational conditions. Experimental tests will be performed in the Propulsion-Test-Facility (PTF) of the Institute of Jet Propulsion and Turbomachinery (IFAS) of Technische Universität Braunschweig, Germany. The final objective of the project is to provide an open test case for the entire research community, with geometries, numerical and experimental results to establish a new reference for composite UHBR fan design. This will support the development of new methods and tools for the development of safer, lighter and more efficient composite fans for greener UHBR engines. In this work the preliminary design of the low transonic fan (LTF) to be used as test article, whose main requirement is to be operated in a safe and controlled way in conditions of aerodynamic and/or aeroelastic instability during wind tunnel operations, is presented. More in particular, consolidated aerodynamic design, strategy adopted to drive the structural design, flutter analysis taking into account acoustic reflection at the intake, dynamic and stress analyses, as well as aeroacoustic measurement optimization are presented and discussed. The preliminary mechanical design of composite blades and the rotor hub, together with the rotor instrumentation and related studies to embed sensors in the composite blades, are also part of this article, and complemented by manufacturing trials and demonstration tests give the full picture of all the project activities up to the preliminary design review

    How to make ecological models useful for environmental management

    Get PDF
    Understanding and predicting the ecological consequences of different management alternatives is becoming increasingly important to support environmental management decisions. Ecological models could contribute to such predictions, but in the past this was often not the case. Ecological models are often developed within research projects but are rarely used for practical applications. In this synthesis paper, we discuss how to strengthen the role of ecological modeling in supporting environmental management decisions with a focus on methodological aspects. We address mainly ecological modellers but also potential users of modeling results. Various modeling approaches can be used to predict the response of ecosystems to anthropogenic interventions, including mechanistic models, statistical models, and machine learning approaches. Regardless of the chosen approach, we outline how to better align the modeling to the decision making process, and identify six requirements that we believe are important to increase the usefulness of ecological models for management support, especially if management decisions need to be justified to the public. These cover: (i) a mechanistic understanding regarding causality, (ii) alignment of model input and output with the management decision, (iii) appropriate spatial and temporal resolutions, (iv) uncertainty quantification, (v) sufficient predictive performance, and (vi) transparent communication. We discuss challenges and synthesize suggestions for addressing these points. © 2019 The Author(s)This paper was initialized during a special session on Ecological Modelling at the 10th Symposium for European Freshwater Science 2017 ( http://www.sefs10.cz/ ) and further developed during the AQUACROSS project, funded by European Union's Horizon 2020 research and innovation programme (Grant agreement No. 642317 ). SD, SDL and MF were partly funded by the “GLANCE” project (Global Change Effects in River Ecosystems; 01 LN1320A) through the German Federal Ministry of Education and Research ( BMBF ). SDL has received additional funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 748625 . JML acknowledges the support of the Spanish Government through María de Maeztu excellence accreditation 2018–2021 (Ref. MDM-2017-0714 )

    The limiting speeds of characteristics in relaxation hydrodynamics

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32286/1/0000353.pd
    corecore