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Error analysis of discontinuous Galerkin
discretizations of a class of linear wave-type
problems

Marlis Hochbruck and Jonas Köhler

Abstract In this paper we consider central fluxes discontinuous Galerkin space
discretizations of a general class of wave-type equations of Friedrichs’ type. This
class includes important examples such as Maxwell’s equations and wave equations.
We prove an optimal error bound which holds under suitable regularity assumptions
on the solution. Our analysis is performed in a framework of evolution equations on
a Hilbert space and thus allows for the combination with various time integration
schemes.

1 Introduction

The aim of this paper is to provide a rigorous error analysis of central fluxes dis-
continuous Galerkin (dG) space discretizations of a large class of linear wave-type
equations of the following form. For a given initial value u0 we seek a solution u
such that { M∂tu = Lu + g, R+ ×Ω,

u(0) = u0, Ω,

(1a)

(1b)

supplied with suitable boundary conditions, which will be specified later. Here, Ω is
an open, bounded and connected Lipschitz domain inRd , M is a symmetric positive
definite material tensor, and g is a source term. Further,L is a Friedrichs’ operator
[8] given by

Lu =
d∑
i=1

Li∂iu + L0u, Li ∈ R
m×m, i = 0, . . . , d, (2)
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where L1, . . . , Ld are symmetric and the symmetric part of L0 is negative semi-
definite, i.e., xT (L0 + LT

0 )x ≤ 0 for all x ∈ Rm. For the sake of presentation, we
restrict ourselves to constant matrix coefficients Li although our results also hold
for space dependent coefficients under certain additional assumptions. We refer to
[1, 14] for the more general case.

Important examples of this class of problems are the wave equation in first order
formulation, Maxwell’s equations, and the advection equation, see, e.g., [1, 2, 3, 14].

Partial differential equations governed by Friedrichs’ operators have been studied
intensively in the series of papers [5, 6, 7] and Chapter 7 of the book [3]. However,
the results therein are only applicable to stationary problems or by treating the
problem as a space-time problem, where the temporal variable is incorporated into
the Friedrichs’ operator.

In contrast to this work, our analysis is performed in a framework of evolution
equations and can thus be combined with various time integration schemes. This
then ultimately leads to full discretization error bounds, as has been shown in the
thesis [14] for the particular choice of a Peaceman–Rachford ADI scheme. A proof
of the wellposedness of (1) supplied with suitable initial and boundary conditions
was recently provided in [1]. This analysis covers the special case of M = I, which
means that the material parameters are incorporated into the coefficients of the
differential operator L. Unfortunately, this excludes materials with sharp interfaces
as the coefficients of L need to fulfill certain regularity restrictions, see the second
remark in [1, Sec. 3.2].

Hence, we follow a slightly different approach by incorporating thematerial tensor
into the inner product of the state space. This allows us to weaken the restrictions on
the regularity of the material parameters. Moreover, we treat boundary conditions as
in [5] since this fits better to the dG discretization than the approach in [1].

Semi-discretizations of more general hyperbolic problems were considered in a
unified error analysis in [11]. In this analysis, error bounds are given in terms of
various discretization defects, interpolation errors, errors in the approximations of
the spatial domain, the bilinear forms, and starting values. To apply this analysis
to a particular application and discretization, one has to check that the continuous
and the discretized problem both fit into the very general framework and to provide
bounds for all these approximation errors. This constitutes the main work in our
paper. Although we could then apply the general result of [11], we present proofs of
the final error bound in Section 4, since they are relatively short for our application
and this keeps the paper self-contained.

To the best of our knowledge, such bounds for hyperbolic evolution equations in
first order formulation are only available for Maxwell’s equations, cf. [15]. For the
wave equation in second order formulation similar results were derived in [9], where
the Laplace operator was discretized by a symmetric interior penalty dG method.

Our main result shows that the solution of the spatially discrete evolution equation
has an error of order hk in the L2-norm induced by the material tensor M .

The paper is organized as follows. In Section 2 we provide the analytical frame-
work for our paper. In particular, we collect properties of Friedrichs’ operators and
show the wellposedness of the linear wave-type problem (1). Section 3 is devoted to
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the dG discretization of linear wave-type equations written as a Friedrichs’ system.
We show various properties of the discretized Friedrichs’ operator which are crucial
for the following error analysis given in Section 4.

Notation

Throughout this paper we use the following notation:
We use d ∈ N as the spatial dimension and m ∈ N as a generic positive integer,

usually being the number of components of vector-valued functions. The indicator
function of a set S ⊂ Rd is denoted as 1S .

Let
(
X,

(
· �� ·

)
X

)
and

(
Y,

(
· �� ·

)
Y

)
be real Hilbert spaces. The identity operator

on a Hilbert space X is denoted by I. By B(X, Y ) we denote the set of all bounded
operators from X to Y and we abbreviate B(X ) = B(X, X ). The dual space of a
Hilbert space X is denoted as X ′ and we use the notation

〈
· �� ·

〉
: X ′ × X → R for

the canonical dual pairing between a Hilbert space and its dual space.
Let K ⊂ Rd open. Then we denote the space of infinitely differentiable functions,

which have compact support on K as C∞c (K ). For vector-valued functions u, v ∈
L2(K )m, the L2(K )-inner product is denoted by

(
u �� v

)
K =

∫
K

u · v dx,

and for F ⊂ ∂K and u|F, v |F ∈ L2(F)m we write

(
u �� v

)
F =

∫
F

u|F · v |F dσ.

The norms induced by these inner products are denoted by ‖ · ‖K and ‖ · ‖F . We
denote the Hq (K )-norm and seminorm by ‖ · ‖q,K and | · |q,K , respectively.

Let M ∈ L∞(K )m×m be a squarematrix-valued field on K .We denote the essential
supremum of the spectral norm of M by

‖M ‖∞,K = ess sup
x∈K

‖M (x)‖,

where ‖ · ‖ is the spectral norm.

2 Analytical properties of Friedrichs’ systems

The graph space of a Friedrichs’ operator L defined in (2) is given by

H (L) = {v ∈ L2(Ω)m | Lv ∈ L2(Ω)m},
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and, endowed with the graph norm ‖ · ‖L = ‖ · ‖Ω + ‖L · ‖Ω, is a Hilbert space
[3, Lem. 7.2]. Note that, by definition, we have L ∈ B(H (L), L2(Ω)m). The
notation H (L) is chosen based on the spaces H (div) and H (curl), which are the
corresponding concepts for the divergence and curl operator, respectively.

Definition 2.1 We callL~ ∈ B(H (L), L2(Ω)m) defined by

L~u = −
d∑
i=1

Li∂iu + LT
0 u (3)

the formal adjoint of L.

Functions in H (L) are not necessarily smooth enough to admit L2-traces on the
boundary. To still obtain access to boundary values in this weak setting, we follow
[5] and introduce the following abstract boundary operator.

Definition 2.2 We callL∂ : H (L) → H (L)′ defined by〈
L∂u �� v

〉
=

(
Lu �� v

)
Ω −

(
u ��L~v

)
Ω for all u, v ∈ H (L) (4)

the boundary operator associated with L.

We point out that (4) can be seen as a generalization of the integration by parts
formula. Further, by [5, Sec. 2.1] we have L∂ ∈ B(H (L), H (L)′) and that L∂ is
self-adjoint.

Next, we implement boundary conditions into the abstract setting. In particular,
we consider a class of homogeneous conditions that can be treated by incorporating
them into the space on which the wave-type problem (1) is considered. Again, we
follow [5] and pose the following assumption.

Assumption 2.3 Weassume there exists a bounded operatorLΓ ∈ B(H (L), H (L)′)
fulfilling 〈

LΓv �� v
〉
≤ 0 for all v ∈ H (L), (5a)

H (L) = ker(L∂ −LΓ) + ker(L∂ +LΓ). (5b)

Note that both ker(L∂ −LΓ) and ker(L∂ +LΓ) are Hilbert spaces if endowed with
the graph norm of L, as they are the kernels of bounded operators on H (L).

Theorem 2.4 The restriction ofL to ker(L∂ −LΓ) is maximal dissipative.

Proof Let v ∈ ker(L∂ −LΓ). By Definitions 2.2 and 2.1 of the boundary operator
and the formal adjoint, respectively, we have

2
(
Lv �� v

)
Ω =

(
Lv �� v

)
Ω +

(
L~v �� v

)
Ω +

(
Lv �� v

)
Ω −

(
L~v �� v

)
Ω

=
(
(L0 + LT

0 )v �� v
)
Ω +

〈
L∂v �� v

〉
≤

〈
(L∂ −LΓ)v �� v

〉
+

〈
LΓv �� v

〉
≤ 0,
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where the first inequality follows since the symmetric part of L0 is negative semi-
definite and the second because of v ∈ ker(L∂−LΓ) and (5a). Hence,L is dissipative
on ker(L∂−LΓ). The maximality is a direct consequence of [5, Theorem 2.5], which
shows that (I − λL) : ker(L∂ −LΓ) → L2(Ω)m is an isomorphism for λ > 0. �

Next, we showwellposedness of (1) by using semigroup theory. Hence, we define the
domain of L as D(L) B ker(L∂−LΓ).We assume that M ∈ L∞(Ω)m×m is symmet-
ric positive definite a.e. onΩ, and that the source term satisfies g ∈ C(R+; L2(Ω)m).
Then, Theorem 2.4 already yields wellposedness of (1) on D(L) for suitable ini-
tial conditions if M = I. This is due to the fact that L |D(L) is the generator of a
contraction semigroup w.r.t. ‖ · ‖Ω by the Lumer–Phillips Theorem [4, Thm. II.3.15,
Cor. II.3.20].

If we have M , I, we define the weighted inner product
(
· �� ·

)
M by(

u �� v
)
M =

(
Mu �� v

)
Ω, u, v : Ω→ Rd

and denote the induced norm by ‖ · ‖M . Note that since this inner product is equivalent
to the standard L2 inner product, L2(Ω)m is again a Hilbert space if endowed with(
· �� ·

)
M .

By multiplying (1a) with M−1, we obtain the (equivalent) abstract evolution
problem




∂tu = L̃u + f , R+ ×Ω,

u(0) = u0,

(6a)

(6b)

with L̃ B M−1L and f B M−1g. We can now use Theorem 2.4 to show that the
restriction of L̃ to D(L) is maximal dissipative w.r.t. the weighted inner product(
· �� ·

)
M .

Theorem 2.5 The restriction of L̃ to D(L) is maximal dissipative.

Proof The dissipativity of L̃ directly follows from the dissipativity ofL as we have(
L̃u �� v

)
M =

(
ML̃u �� v

)
Ω =

(
Lu �� v

)
Ω ≤ 0. (7)

Maximality again follows as a consequence of [5, Theorem 2.5], which yields that
(M − λL) : D(L) → L2(Ω)m is an isomorphism for all λ > 0. Since M is positive
definite and bounded, this is equivalent to (I − λL̃) : D(L) → L2(Ω)m being an
isomorphism, yielding the desired range condition. �

Hence, by the Lumer–Phillips Theorem, the restriction of L̃ to D(L) generates a
contraction semigroup w.r.t. ‖ · ‖M , which we denote by

(
etL̃

)
t≥0.

Corollary 2.6 Let f ∈ C1(R+; L2(Ω)m) ∪ C(R+; D(L)). Then, for given ini-
tial value u0 ∈ D(L), there exists a unique solution u ∈ C1(R+; L2(Ω)m) ∩
C(R+; D(L)) of (6) given by the variation-of-constants formula

u(t) = etL̃ u0 +

∫ t

0
e(t−s)L̃ f (s) ds.
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Remark 2.7 For the sake of presentation, we only consider Friedrichs’ operators
with constant coefficients. However, all of the above can be extended to more general
coefficients, e.g., Lipschitz coefficients. We refer to [14, Chapter 2] for the more
general case.

Further, the assumption of negative semi-definiteness of L0 can be dropped. This
leads to L and L̃ being shift-dissipative rather than dissipative on D(L), see also
the remark on the positivity condition (F2) in [1, Section 2.1].

Let us also point out that the restriction of the formal adjoint operator L~

to ker(L∂ + L∗
Γ

) is maximal dissipative. This can be shown with the exact same
strategy of proof. In fact, this is the Hilbert space adjoint of L restricted to D(L).

3 Spatial discretization

To obtain a spatially discretized version of (6) we discretize the differential operator
L̃ using a central fluxes dG approximation [3, 10]. As L̃ is defined via the Friedrichs’
operator L we start by discretizing the latter and then define the discrete version of
L̃ analogously to the continuous case.

To avoid technicalities, we assume that the domain Ω is a polyhedron, meaning
we can decompose Ω into a polyhedral mesh. However, we refer to [11] for a way to
take errors made by approximating non-polyhedral domains into account.

For the sake of readability, we postpone some of the longer proofs in this section.
They can be found in the appendix.

3.1 Discrete setting

Before we define discrete Friedrichs’ operators, we introduce some notation and
the discrete setting. Let T be a mesh of Ω. For each (open) mesh element K ∈ T,
we denote the diameter of K by hK . To write down mesh-dependent norms more
concisely, we further define the piecewise constant function h ∈ L∞(Ω) by h|K ≡ hK

for all K ∈ T. The maximal diameter h = maxK ∈T hK of all elements in T is called
the meshsize of T and we use the notation Th for a mesh with meshsize h. In
order to investigate the convergence of the method, we consider a mesh sequence
TH =

(
Th

)
h∈H , where H is a countable collection of positive numbers with 0 as

only accumulation point. We assume that we have h < 1 for all h ∈ H and that TH
is admissible in the sense of [3, Def. 1.57], meaning it is shape- and contact regular
and has optimal polynomial approximation properties, cf., [3, Def. 1.38, 1.55]. We
denote the mesh regularity parameter by ρ.

We gather the faces of a mesh Th in the set Fh = Fint
h
∪Fbnd

h
, where Fint

h
contains

the interior faces and Fbnd
h

contains the boundary faces. For each K ∈ Th , we denote
the faces composing the boundary of an element K by FK

h
= FK,int

h
∪ FK,bnd

h
, again

decomposed into interior and boundary faces. The maximum number of faces per
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element in Th is denoted by N∂ = maxK ∈Th
|FK

h
|. Note that by [3, Lemma 1.41], N∂

is bounded independently of h ∈ H .
The outward unit normal vector to an element K ∈ Th is denoted by nK . Further,

for each interface F ∈ Fint
h
, we arbitrarily denote the two neighboring elements,

whose boundaries contain F, as KF
1 and KF

2 . We fix this choice and define the face
normal vector nF as the outward unit normal vector to KF

1 . For all boundary faces
F ∈ Fbnd

h
, we define nF as the outward unit normal vector to Γ.

To approximate functions in space, we consider the discrete approximation space

Vh = { v ∈ L2(Ω) | v |K ∈ Qk
d (K ) for all K ∈ Th }

m,

where Qk
d

(K ) denotes the set of polynomials on K of degree at most k in each
variable.

Remark 3.1 For the sake of presentation, we use the same polynomial degree on all
elements K ∈ Th . However, we point out that the method is flexible enough to easily
allow varying polynomial degrees on each element. Note also that other choices for
the discrete approximation space are possible. We refer to [3, Sec. 1.2.4.3] for further
details.

We will frequently need the L2-orthogonal projection πh : L2(Ω)m → Vh onto Vh ,
defined such that for v ∈ L2(Ω)m we have(

v − πhv �� ϕ
)
Ω = 0 for all ϕ ∈ Vh . (8)

Using the L2-orthogonal projection, by

evπ = v − πhv

we denote the projection error of a function v ∈ L2(Ω)m.

Assumption 3.2 We assume that the material tensor M is piecewise constant and
that for all h ∈ H , the mesh Th is matched to the material, i.e., for all K ∈ Th we
have M |K ≡ MK with constant MK ∈ R

m×m.

It is easy to see that for v ∈ L2(Ω)m we have(
evπ �� ϕ

)
M = 0 for all ϕ ∈ Vh

because of Assumption 3.2.
Since we assumed the mesh sequence to be admissible, we can infer some impor-

tant properties of the discrete spaces. Namely, the inverse inequality [3, Lem. 1.44]

‖ ∇v‖K ≤ C ′inv‖h
−1v‖K, (9)

and the discrete trace inequality [3, Lem. 1.46]

‖v‖F ≤ Ctr‖h−1/2v‖K (10)
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hold as a consequence of the shape- and contact regularity. From the inverse in-
equality (9), we can easily deduct a similar inequality for the Friedrichs’ operatorL
instead of the gradient, namely

‖Lv‖K ≤ CLCinv‖h−1v‖K, (11)

where CL = maxi=0,...,d ‖Li ‖ and Cinv =
√

dC ′inv + 1.
Further, the mesh sequence TH has optimal polynomial approximation properties

in the sense of [3, Def. 1.55]. This means that for all h ∈ H , K ∈ Th , F ∈ FK
h
and

v ∈ Hq+1(K ) the projection error of v satisfies

‖evπ ‖K ≤ Cπ |hq+1v |q+1,K, ‖evπ ‖F ≤ Cπ,∂ |hq+1/2v |q+1,K, (12)

where Cπ and Cπ,∂ are independent of both K and h.
The space Vh consists of functions that are polynomials on the elements of Th .

Hence, they can be used to approximate functions that are sufficiently smooth on
these elements. Such functions are gathered in the broken Sobolev spaces

Hq (Th) = { v ∈ L2(Ω) | v |K ∈ Hq (K ) for all K ∈ Th }, q ∈ N,

which are Hilbert spaces if endowed with the norm

‖v‖2q,Th
=

q∑
j=0
|v |2j,Th

, |v |2q,Th
=

∑
K ∈Th

|v |2q,K .

Functions in both Vh and Hq (Th) are only piecewise smooth, i.e., smooth on every
mesh element K ∈ Th , but not necessarily on the whole domain Ω. Hence, they may
have discontinuities across the faces of the mesh, which is why we define the average
and the jump of a function v across an interior face F ∈ Fint

h
as

{{v}}F =
v |KF

1
+ v |KF

2

2
and JvKF = v |KF

1
− v |KF

2
,

respectively. Here and in the following, the restriction of v to an element K ∈ Th

evaluated on a face F ∈ FK
h
is understood as the limit of v approaching F from K .

For vector and matrix fields these operations act componentwise.

3.2 Friedrichs’ operators in the discrete setting

Up until now, we only got hold of the boundary operators in an abstract way, since
functions in the graph space of a Friedrichs’ operator L are not necessarily smooth
enough to admit square-integrable traces. However, to define the discrete operators
and to implement them in the full discretization scheme, it is convenient to access
boundary values in a more explicit way. This can be achieved by assuming a bit more
regularity, which enables us to use the integration by parts formulas.
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Lemma 3.3 Let S ⊂ Ωwith outward unit normal vector nS and letL~ be the formal
adjoint ofL defined in (3). Then for v,w ∈ D(L) with v |S,w |S ∈ L2(∂S)m we have

(
Lv �� w

)
S −

(
v ��L~w

)
S =

( d∑
i=1
n
S
i Liv �� w

)
∂S,

and, in particular,

〈
L∂v �� w

〉
=

( d∑
i=1
n
Ω
i Liv �� w

)
Γ .

Proof By the definition of L, we have

(
Lv �� w

)
S =

d∑
i=1

(
∂iv �� Liw

)
S +

(
v �� LT

0 w
)
S .

Using integration by parts and the fact that the coefficients of L are constant yields

(
Lv �� w

)
S =

d∑
i=1

((
v �� − ∂i (Liw)

)
S +

(
n
K
i v

�� Liw
)
∂S

)
+

(
v �� LT

0 w
)
S

=
(
v ��L~w

)
S +

( d∑
i=1
n
K
i Liv �� w

)
∂S

by definition ofL~. �

Note that, in particular, the assumptions of Lemma 3.3 are fulfilled for elements
S = K ∈ Th if v,w ∈ D(L) ∩ H1(Th)m.

Definition 3.4 For K ∈ Th and F ∈ Fh we define the boundary operators
LK
∂
∈ B(L2(∂K )m) associated with an element of the mesh andLF

∂
∈ B(L2(F)m)

associated with a face of the mesh by

LK
∂ =

d∑
i=1
n
K
i Li and LF

∂ =

d∑
i=1
n
F
i Li,

respectively.

The definition of LK
∂

is motivated by Lemma 3.3, which relates it to the boundary
term of the integration by parts formula on each element of the mesh. Further, the
operatorLF

∂
will allow for a more concise notation in the definition and handling of

the discrete operator. The latter is well-defined as we consider constant coefficients
Li , i = 1, . . . , d, and hence, their traces are single-valued on each face.

To get hold of the abstract boundary operator LΓ defined in Assumption 2.3 in a
similar way, we make the following assumption.
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Assumption 3.5 We assume that we haveLΓ ∈ B(L2(Γ)m), i.e., for v,w ∈ L2(Γ)m

we have 〈
LΓv �� w

〉
=

(
LΓv �� w

)
Γ .

We point out that this assumption is not very restricting as it is fulfilled in many
applications, see [5, Section 5].

Before we define the discrete Friedrichs’ operator, we prove two auxiliary results,
which are needed to show crucial properties of the discrete operators. The first one
relates the boundary operatorsLK

∂
andLF

∂
.

Lemma 3.6 Let v,w ∈ H1(Th)m. Then we have∑
K ∈Th

(
LK
∂ v �� w

)
∂K =

∑
F ∈Fint

h

((
LF
∂ {{v}}F

�� JwKF
)
F +

(
LF
∂ JvKF �� {{w}}F

)
F

)
+

∑
F ∈Fbnd

h

(
LF
∂ v �� w

)
F .

Proof Using the definition of the boundary operatorsLK
∂
andLF

∂
and the directions

of the element and face normals nK and nF , respectively, we calculate∑
K ∈Th

(
LK
∂ v �� w

)
∂K =

∑
F ∈Fint

h

((
LF
∂ v |KF

1
�� w |KF

1

)
F −

(
LF
∂ v |KF

2
�� w |KF

2

)
F

)
+

∑
F ∈Fbnd

h

(
LF
∂ v �� w

)
F

=
∑

F ∈Fint
h

(
J(LF

∂ v) · wKF �� 1
)
F +

∑
F ∈Fbnd

h

(
LF
∂ v �� w

)
F .

Using the identity J f · gKF = {{ f }}F · JgKF + J f KF · {{g}}F for all f , g : Ω → Rm

concludes the proof. �

The next result characterizes functions in the graph space of L, or rather its inter-
section with the broken Sobolev space H1(Th)m. It states that the traces of such
functions corresponding toL vanish across interfaces of the mesh. Further, if these
functions are additionally contained in the domain D(L), they fulfill the correspond-
ing boundary condition. The proof can be found in the appendix.

Lemma 3.7 Let v ∈ H1(Th)m. Then we have v ∈ H (L) if and only if

LF
∂ JvKF = 0 a.e. on F for all F ∈ Fint

h . (13)

Additionally, for v ∈ D(L) ∩ H1(Th)m, we have

(LF
∂ −LΓ)v = 0 a.e. on F for all F ∈ Fbnd

h . (14)
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3.3 Discrete Friedrichs’ operators

In this section we define and investigate the central flux discretization of a Friedrichs’
operatorL. Naturally, we would define this discrete operator on the discrete approx-
imation space Vh . However, in view of the error analysis, it is convenient to extend
the definition to the space D(L)∩H1(Th)m. We combine both spaces in the discrete
operator domain associated with L given by

VL
h = Vh + (D(L) ∩ H1(Th)m)

and define the discrete operator as follows.

Definition 3.8 The central fluxes dGdiscretization of L is the operatorL : VL
h
→ Vh

defined as (
Lv �� ϕ

)
Ω =

∑
K ∈Th

(
Lv �� ϕ

)
K −

∑
F ∈Fint

h

(
LF
∂ JvKF �� {{ϕ}}F

)
F

− 1
2

∑
F ∈Fbnd

h

(
(LF

∂ −LΓ)v �� ϕ
)
F for all ϕ ∈ Vh .

(15)

Remark 3.9 The average used in (15) can be replaced by a weighted average {{v}}ΛF =
{{Λ}}−1

F {{Λv}}F withΛ ∈ L∞(Ω)m×m being symmetric and uniformly positive a.e. on
Ω. The following results then still hold, albeit with different constants involving the
weights. If the weight is chosen in a suitable way this can improve the constants, see
e.g., [15] for isotropic Maxwell’s equations.

We next gather some important properties of the discrete Friedrichs’ operator. The
first one is a consistency property that shows that the discrete operator in some sense
indeed approximates its continuous counterpart.

Proposition 3.10 The discrete Friedrichs’ operator L fulfills the consistency prop-
erty

Lv = πhLv for all v ∈ D(L) ∩ H1(Th)m.

Proof Let v ∈ D(L) ∩ H1(Th)m. By Lemma 3.7 the interface and boundary terms
in (15) vanish. Hence, we have(

Lv �� ϕ
)
Ω =

(
Lv �� ϕ

)
Ω =

(
πhLv �� ϕ

)
Ω for all ϕ ∈ Vh

by the definition of πh in (8). �

In addition, the discrete Friedrichs’ operator inherits the dissipativity of L if re-
stricted to the discrete approximation space. To show this, we proceed as in the
continuous case.
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Lemma 3.11 The adjoint operator L~ : Vh → Vh of L|Vh
is given by(

L~v �� ϕ
)
Ω =

∑
K ∈Th

(
L~v �� ϕ

)
K +

∑
F ∈Fint

h

(
LF
∂ JvKF �� {{ϕ}}F

)
F

+ 1
2

∑
F ∈Fbnd

h

(
(LF

∂ +L
T
Γ )v �� ϕ

)
F for all ϕ ∈ Vh,

and satisfies(
Lv �� ϕ

)
Ω +

(
L~v �� ϕ

)
Ω =

(
(L0 + LT

0 )v �� ϕ
)
Ω +

1
2
(
(LΓ +L

T
Γ )v �� ϕ

)
Γ (16)

for all ϕ ∈ Vh .

Proof Using the integration by parts formula from Lemma 3.3 on each element K
and Lemma 3.6 on the arising interface terms readily yields that L~ is in fact the
adjoint of L. Identity (16) follows by a straightforward calculation. �

Proposition 3.12 The restriction of the discrete Friedrichs’ operator L to Vh is
dissipative, i.e., we have (

Lv �� v
)
Ω ≤ 0 for all v ∈ Vh .

Proof By the adjointness of L and L~ we have(
Lv �� v

)
Ω =

1
2

((
Lv �� v

)
Ω +

(
L~v �� v

)
Ω

)
≤ 0,

where we have used (16) together with the dissipativity of LΓ and the negative
semidefiniteness of L0. �

Similar to the continuous operator fulfilling (11), the discrete Friedrichs’ operator
satisfies an inverse inequality.
Proposition 3.13 Let v ∈ Vh . Then, the discrete Friedrichs’ operator L fulfills the
inverse inequality

‖Lv‖Ω ≤ Cinv,L‖h−1v‖Ω.

The constant is given by Cinv,L = CLCinv +
1
2C2

tr
(
CΓ,L + N∂CL (1 + ρ1/2)

)
with

CΓ,L = maxF ∈Fbnd
h
‖LF

∂
−LΓ‖∞,F .

Lastly, we have a result on the approximation properties of the discrete Friedrichs’
operator. It gives a bound on the application ofL to the projection error of a function
in D(L) ∩ Hq+1(Th)m.
Proposition 3.14 Let v ∈ D(L) ∩ Hq+1(Th)m for 0 ≤ q ≤ k. Then we have

‖Levπ ‖Ω ≤ Cπ,L |hqv |q+1,Th
. (17)

The constant is given by Cπ,L = 1
2 N∂CtrCπ,∂

(
CΓ,L + CL (1 + ρ1/2)

)
.

The proofs of both Proposition 3.13 and 3.14 are given in the appendix.
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3.4 Spatial discretization of the wave-type problem

We are now able to formulate the spatially semi-discrete version of the wave-type
problem (6). To this end, we define the operator L̃ : VL

h
→ Vh analogously to the

continuous case by L̃ = M−1L. Note that, owing to Assumption 3.2, L̃ exhibits the
same consistency property as L, namely

L̃v = πhL̃v for all v ∈ D(L) ∩ H1(Th)m. (18)

Using L̃ we can state the spatially discrete wave-type problem




∂tu = L̃u + fπ, R+ ×Ω,

u(0) = u0
π,

(19a)

(19b)

with fπ B πh f and initial value u0
π B πhu0.

Since L inherits the dissipativity of the continuous operator on the discrete
approximation space Vh by Proposition 3.12, L̃ is dissipative w.r.t. the weighted
inner product

(
· �� ·

)
M . This can easily be seen since (7) also holds for the discrete

operators. Further, both L and L̃ are maximal as Vh is finite-dimensional. Hence,
by the Lumer–Phillips Theorem, the restriction of L̃ to Vh generates a contraction
semigroup w.r.t. ‖ · ‖M , which we denote by

(
etL̃

)
t≥0 .

Corollary 3.15 There exists a unique solution u ∈ C1(R+; Vh) of (19) given by the
variation-of-constants formula

u(t) = etL̃ u0
π +

∫ t

0
e(t−s)L̃ fπ (s) ds. (20)

4 Error analysis of the spatially semi-discrete problem

We are now able to analyze the spatially semi-discrete error

e = u − u,

where u denotes the semi-discrete approximation given by (19) and u is the exact
solution of (6). We split this error into

e = eπ + eh = u − πhu + πhu − u, (21)

where eπ is the projection error and eh is the space discretization error.
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By (12) and the boundedness of M we have the following bound on the projection
error

‖eπ (t)‖M ≤ Cπ,M |hk+1u(t) |k+1,Th
(22)

with Cπ,M = ‖M ‖
1/2
∞,Ω

Cπ .
Hence, it remains to bound the space discretization error eh . We do this by

showing that eh satisfies the semi-discrete problem (19) with zero initial value and
the right hand side given by a defect stemming from the spatial discretization. Using
the variation-of-constants formula (20) and the stability of the semi-discrete scheme
(owing to the contractivity of the semigroup

(
etL̃

)
t≥0) we can then bound the

discretization error by this defect. Lastly, the approximation property (17) of the
discrete operator L provides a bound on the defect and thus on the discretization
error.

Lemma 4.1 Assume that the exact solution of (6) fulfills u ∈ C1(R+; L2(Ω)m) ∩
C(R+; D(L)∩H1(Th)m). Then the space discretization error eh = πhu−u satisfies




∂t eh (t) = L̃eh (t) + dπ (t), t ∈ R+,

eh (0) = 0,
(23)

where the defect dπ : R+ → Rm is given by

dπ = L̃eπ . (24)

Proof We begin by inserting the projected exact solution πhu into the semi-discrete
equation (19a) and defining the error made by this as dπ , yielding

∂tπhu = L̃πhu + fπ + dπ . (25)

Subtracting the semi-discrete scheme (19a) from (25) readily implies (23).
To show (24), we use that ∂t and the L2-projection commute and that u solves the

continuous problem (6) to obtain

∂tπhu = πh∂tu = πh (L̃u + f ) = L̃u + fπ .

Here, we have used the consistency property (18) in the last step. Equating this with
(25) and solving for dπ yields

dπ = L̃u − L̃πhu = L̃eπ,

concluding the proof. �

Having derived an evolution equation for the error, we can now solve it to obtain a
bound on the space discretization error. Together with the already mentioned bound
on the projection error (22) we can thus bound the spatially semi-discrete error.
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Theorem 4.2 Assume that the exact solution u of the wave-type problem (6) satisfies
u ∈ C1(R+; L2(Ω)m) ∩C(R+; D(L) ∩Hk+1(Th)m). Then, for t ∈ R+, the spatially
semi-discrete error satisfies

‖u(t) − u(t)‖M ≤ Cπ,M |hk+1u(t) |k+1,Th
+ Cπ,L,M

∫ t

0
|hku(s) |k+1,Th

ds

≤ Chk,

where Cπ,L,M = ‖M−1‖1/2
∞,Ω

Cπ,L and C only depends on Cπ,M , Cπ,L,M and
|u(s) |k+1,Th

, s ∈ [0, t].

Proof We use Corollary 3.15 to solve the error equation (23), which yields

eh (t) =
∫ t

0
e(t−s)L̃ dπ (s) ds.

By the contractivity of the semigroup
(
etL̃

)
t≥0 in the ‖ · ‖M -norm we obtain

‖eh (t)‖M ≤
∫ t

0
‖dπ (s)‖M ds =

∫ t

0
‖L̃eπ (s)‖M ds.

It remains to bound ‖L̃eπ (s)‖M . To do so, we use the boundedness of M and the
approximation property from Proposition 3.14 applied to L, yielding

‖L̃eπ (s)‖M = ‖M−1/2Leπ (s)‖Ω

≤ ‖M−1‖1/2
∞,Ω
‖Leπ (s)‖Ω

≤ ‖M−1‖1/2
∞,Ω

Cπ,L |hku(s) |k+1,Th
.

Taking norms and using the triangle inequality in the error splitting (21) together
with the already established bound (22) on eπ proves the claim. �

Concluding remarks

In this paper we presented a rigorous error analysis of the spatial discretization
of a large class of wave-type problems by discontinuous Galerkin methods. This
class includes Maxwell’s equations and the acoustic wave equation, for instance. It
has been shown in [12] that such a space discretization on cuboids and tensorial
grids can be combined with a Peaceman–Rachford (ADI) time integration scheme
in such a way that it has optimal (linear) complexity for suitable problems. The full
discretization error of the resulting schemeis studied in [14].
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Appendix: proofs from Section 3

In this appendix we collect the proofs we postponed in Section 3.

Proof (Lemma 3.7) Let v ∈ H1(Th)m.
(i) We first prove that v ∈ H (L) follows from (13) by showing the boundedness

of the mapping

C∞c (Ω)m → R, ϕ 7→
(
v ��L~ϕ

)
Ω. (26)

Let ϕ ∈ C∞c (Ω)m so that JϕKF = 0 and {{ϕ}}F = ϕ|F for all F ∈ Fint
h

and ϕ|F = 0 for
all F ∈ Fbnd

h
. By applying the integration by parts formula from Lemma 3.3 on each

element we have(
v ��L~ϕ

)
Ω =

∑
K ∈Th

(
v ��L~ϕ

)
K

=
∑
K ∈Th

(
Lv �� ϕ

)
K +

∑
K ∈Th

(
LK
∂ v �� ϕ

)
∂K

=
∑
K ∈Th

(
Lv �� ϕ

)
K +

∑
F ∈Fint

h

(
LF
∂ JvKF �� ϕ

)
F

=
∑
K ∈Th

(
Lv �� ϕ

)
K,

(27)

where we have used Lemma 3.6 in the third and (13) in the last step. Applying the
Cauchy–Schwarz inequality we obtain the boundedness of (26) and hence v ∈ H (L).

(ii) Next, let v ∈ H (L) ∩ H1(Th)m. By [13, Theorem 1.2] we have that H (L) ∩
C∞(Ω)m is dense in H (L). Hence, we can choose a sequence (vn)n∈N in H (L) ∩
C∞(Ω)m with

vn → v, Lvn → Lv in L2(Ω)m.

For arbitrary ϕ ∈ C∞c (Ω)m and with nΩ denoting the outward unit normal vector to
Γ, Lemma 3.3 yields
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Lv �� ϕ

)
Ω = lim

n→∞

(
Lvn �� ϕ

)
Ω

= lim
n→∞

((
vn ��L~ϕ

)
Ω +

( d∑
i=1
n
Ω
i Livn �� ϕ

)
Γ

)
=

(
v ��L~ϕ

)
Ω.

Comparing this with the third line in (27) yields∑
F ∈Fint

h

(
LF
∂ JvKF �� ϕ

)
F = 0.

Since ϕ was arbitrary, this in particular holds for supp ϕ only intersecting a single
interface, which implies (13).

(iii) To show the last assertion, let v ∈ D(L) ∩ H1(Th)m and F ∈ Fbnd
h

. Since
v |F ∈ L2(F)m, by Lemma 3.3 and Assumption 3.5 we have(

(LF
∂ −LΓ)v �� ϕ

)
F = 0 for all ϕ ∈ C∞(Ω)m,

which shows (14). �

Proof (Proposition 3.13) We begin by deriving an elementwise representation ofL.
Namely, since we have

(
Lv �� ϕ

)
K =

(
Lv ��1Kϕ

)
Ω for all ϕ ∈ Vh , a straightforward

calculation yields(
Lv �� ϕ

)
K =

(
Lv �� ϕ

)
K −

1
2

∑
F ∈FK, int

h

(
LF
∂ JvKF �� ϕ |K

)
F (28)

− 1
2

∑
F ∈FK,bnd

h

(
(LF

∂ −LΓ)v �� ϕ
)
F .

We now bound the element, interface and boundary face terms individually, be-
ginning with the former. Using the Cauchy–Schwarz inequality and the inverse
inequality (11) yields(

Lv �� ϕ
)
K ≤ ‖Lv‖K ‖ϕ‖K ≤ CLCinv‖h−1v‖K ‖ϕ‖K .

The boundary terms are treated similarly by again using the Cauchy–Schwarz in-
equality and this time the boundedness of LF

∂
and LΓ and the trace inequality (10)

to obtain (
(LF

∂ −LΓ)v �� ϕ
)
F ≤ CΓ,L‖v‖F ‖ϕ‖F

≤ CΓ,LCtr‖h−1/2v‖K Ctr‖h−1/2ϕ‖K

= CΓ,LC2
tr‖h

−1v‖K ‖ϕ‖K,

where we used that h is piecewise constant. To bound the interface terms, we first
rewrite the jump JvKF as



18 Marlis Hochbruck and Jonas Köhler(
LF
∂ JvKF �� ϕ |K

)
F = εK,F

((
LF
∂ v |K �� ϕ |K

)
F −

(
LF
∂ v |KF

�� ϕ |K
)
F

)
,

where εK,F = nK · nF = ±1. The first term can thus be bounded completely
analogously to the boundary term by(

LF
∂ v |K �� ϕ |K

)
F ≤ CLC2

tr‖h
−1v‖K ‖ϕ‖K .

To bound the second term, we additionally use h−1
K ≤ ρh−1

KF
(see [3, Lem. 1.43]) and

thus (
LF
∂ v |KF

�� ϕ |K
)
F ≤ ρ1/2CLC2

tr‖h
−1v‖KF ‖ϕ‖K .

Assembling all these bounds and taking into account that each element has at most
N∂ neighboring elements and at most one boundary face yields(

Lv �� ϕ
)
K ≤

(
CL,el,1‖h−1v‖K + CL,el,2

∑
F ∈FK, int

h

‖h−1v‖KF

)
‖ϕ‖K (29)

for all ϕ ∈ Vh . The constants are given as CL,el,1 = CLCinv +
1
2C2

tr(CΓ,L + N∂CL)
and CL,el,2 =

1
2 ρ

1/2C2
trCL.

It remains to put these elementwise bounds together to obtain a bound w.r.t. the
whole domain Ω. Summing (29) over all elements K ∈ Th yields(

Lv �� ϕ
)
Ω ≤ CL,el,1

∑
K ∈Th

‖h−1v‖K ‖ϕ‖K + CL,el,2
∑
K ∈Th

∑
F ∈FK, int

h

‖h−1v‖KF ‖ϕ‖K .

From here, the assertion follows by straightforward applications of the Cauchy–
Schwarz and Young’s inequality, respectively. �

Proof (Proposition 3.14) We proceed similarly to the proof of Proposition 3.13,
meaning that we first work on the element-based formulation (28). Using integration
by parts yields(

Levπ �� ϕ
)
K =

(
Levπ �� ϕ

)
K −

1
2

∑
F ∈FK, int

h

(
LF
∂ JevπKF �� ϕ |K

)
F

− 1
2

∑
F ∈FK,bnd

h

(
(LF

∂ −LΓ)evπ �� ϕ
)
F

= 1
2

∑
F ∈FK, int

h

(
LF
∂ {{e

v
π }}F

�� ϕ |K
)
F +

1
2

∑
F ∈FK,bnd

h

(
(LF

∂ +LΓ)evπ �� ϕ
)
F

for all ϕ ∈ Vh , where the element term vanishes because of the defining property of
the L2-projection (8) since L~ϕ |K ∈ Q

k
d

(K ).
The rest of the proof is completely analogous to the corresponding part of the

proof of Proposition 3.13. The only difference is that we use the second bound in
(12) instead of the discrete trace inequality. �
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