1,199 research outputs found
Memory Bounded Open-Loop Planning in Large POMDPs using Thompson Sampling
State-of-the-art approaches to partially observable planning like POMCP are
based on stochastic tree search. While these approaches are computationally
efficient, they may still construct search trees of considerable size, which
could limit the performance due to restricted memory resources. In this paper,
we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory
bounded approach to open-loop planning in large POMDPs, which optimizes a fixed
size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four
large benchmark problems and compare its performance with different tree-based
approaches. We show that POSTS achieves competitive performance compared to
tree-based open-loop planning and offers a performance-memory tradeoff, making
it suitable for partially observable planning with highly restricted
computational and memory resources.Comment: Presented at AAAI 201
Statistical Analysis and Stochastic Modelling of Foraging Bumblebees.
PhDIn the analysis of movement patterns of animals, stochastic
processes play an important role, providing us with a variety of tools to examine, model and simulate
their behaviour. In this thesis we focus on the foraging of specific animals - bumblebees - and analyse experimental data to understand the influence of changes in
the bumblebees’ environment on their search flights. Starting with a discussion of
main classes of stochastic models useful for the description of foraging animals,
we then look at a multitude of environmental factors influencing the dynamics of
animals in their search for food. With this background we examine flight data of
foraging bumblebees obtained from a laboratory experiment
by stochastic analyses. The main point of interest of this analysis is the description, modelling and
understanding of the data with respect to the influence of predatory threats on the
bumblebee’s foraging search flights. After this detail-oriented view on interactions of bumblebees with food sources and predators in the experimental data, we
develop a generalized reorientation model. By extracting the necessary information from the data, we arrive at a generalized correlated random walk foraging
model for bumblebee flights, which we discuss and compare to the experimental
data via simulations. We finish with a discussion of anomalous fluctuation relations and some results on spectral densities of autocorrelation functions. While
this part is not directly related to the analysis of foraging, it concerns a closely
related class of stochastic processes described by Langevin equations with non-
trivial autocorrelation functions analyse experimental data to understand the influence of changes in
the bumblebees’ environment on their search flights. Starting with a discussion of
main classes of stochastic models useful for the description of foraging animals,
we then look at a multitude of environmental factors influencing the dynamics of
animals in their search for food. With this background we examine flight data of
foraging bumblebees obtained from a laboratory experiment by stochastic analyses.
The main point of interest of this analysis is the description, modelling and
understanding of the data with respect to the influence of predatory threats on the
bumblebee’s foraging search flights. After this detail-oriented view on interactions
of bumblebees with food sources and predators in the experimental data, we
develop a generalized reorientation model. By extracting the necessary information
from the data, we arrive at a generalized correlated random walk foraging
model for bumblebee flights, which we discuss and compare to the experimental
data via simulations. We finish with a discussion of anomalous fluctuation relations
and some results on spectral densities of autocorrelation functions. While
this part is not directly related to the analysis of foraging, it concerns a closely
related class of stochastic processes described by Langevin equations with nontrivial
autocorrelation functions
Research skills training for child psychiatry residents
International audienc
Chatten kann jede/r ;-). Integration von informellen Lern- und Kommunikationswegen und Social Software in ein Blended-Learning-Konzept für Lehramtsstudierende im Bereich Englische Kulturwissenschaft
Das ELAN (E-Learning Academic Network Niedersachsen) III Projekt CELEB (Content-Entwicklung für die Lehrerbildung im Bereich Englische Kultur und Fachdidaktik unter besonderer Berücksichtigung interaktiv-multimedialer Mehrwerte) zielt auf eine Verbesserung der Lehrqualität durch Ergänzung/ Verschränkung der Präsenzlehre mit zielgruppenspezifischen E-Learning-Modulen ab. Entlastung stark frequentierter obligatorischer Einführungsveranstaltungen, Bündelung der fachwissenschaftlichen Expertise der beteiligten Universitäten und zeit- und ortsunabhängiger Zugang zu den Lernressourcen für Studierende sind weitere Ziele des Projektes. Authentizität und Aktualität erhalten die Inhalte durch multimediale Elemente, kollaborative Wissensgenerierung und Interaktivität. Die Universität Hildesheim bietet im Bereich Cultural Studies nach diesem Blended-Learning-Konzept zwei Kurse an, die ständig ausgebaut und erweitert werden. In beiden Kursen kommt Social Software zum Einsatz, da großer Wert auf kollaborativen Wissenserwerb gelegt wird. Informelle Lern- und Kommunikationswege sollen in diesen Kursen Einbettung in formelle Anerkennungsstrukturen finden. (DIPF/ Orig.
Avertissement : [Ankündigung einer neuen Aufl. der "Vaterländischen Predigten über die Sonn- und Festtags-Evangelien"]
http://tartu.ester.ee/record=b2171546~S1*es
- …