48 research outputs found

    Detection of adeno-associated virus type 2 genome in cervical carcinoma

    Get PDF
    Adeno-associated virus (AAV) can impair the replication of other viruses. Adeno-associated virus seroprevalences have been reported to be lower among women with cervical cancer. In-vitro, AAV can interfere with the production of human papillomavirus virions. Adeno-associated virus-2 DNA has also been detected in cervical cancer tissue, although not consistently. To evaluate the role of AAV infection in relation to invasive cervical cancer, we performed a nested case–control study within a retrospectively followed population-based cohort. A total of 104 women who developed invasive cervical cancer on average 5.6 years of follow-up (range: 0.5 months–26.2 years) and 104 matched control-women who did not develop cervical cancer during the same follow-up time were tested for AAV and human papillomavirus by polymerase chain reaction. At baseline, two (2%) case-women and three (3%) control-women were positive for AAV-2 DNA. At the time of cancer diagnosis, 12 (12%) case-women and 3 (3%) matched control-women were positive for AAV-2 DNA. Persisting AAV infection was not evident. In conclusion, AAV-2 DNA was present in a low proportion of cervical cancers and we found no evidence that the presence of AAV in cervical smears of healthy women would be associated with reduced risk of cervical cancer

    Gene Transfer to Chicks Using Lentiviral Vectors Administered via the Embryonic Chorioallantoic Membrane

    Get PDF
    The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides

    The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment

    Full text link
    Two experiments were designed to assess the effect of a “novel” environment on the development of sensitization to the psychomotor activating effects of d -amphetamine. In the first experiment, rats with a unilateral 6-hydroxydopamine lesion of the mesostriatal dopamine system received ten daily injections of amphetamine (2 mg/kg), either in their home cages or in novel test cages. The home and novel cages were physically identical (cylindrical transparent buckets), but one group lived and were tested in these cages, whereas the other group was transported from the stainless steel hanging cages where they lived to these novel test cages, for each test session. The first injection of amphetamine produced significantly more rotational behavior in animals tested in a novel environment than in animals tested at home. In addition, animals tested in a novel environment showed greater sensitization than animals tested at home, so the difference between the two groups was even more pronounced following the last injection. In a second experiment, locomotor activity was quantified in rats that received ten injections of either saline or 1.5 mg/kg amphetamine, in their home cages or in a physically identical novel environment. Again, there was a significantly greater locomotor response to the first injection of amphetamine, and greater sensitization, in animals tested in a novel environment than in animals tested at home. These data indicate that environmental factors can exert a large effect on the susceptibility to sensitization, and mechanisms by which this may occur are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46345/1/213_2005_Article_BF02246217.pd

    Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation.

    No full text
    Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus (Citrus sinensis) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco (Nicotiana tabacum) leaves obtained from plants transformed with a beta-estradiol-inducible promoter, time-dependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point

    Radiation Power Out-Coupling Optimization of a Free Electron Laser Oscillator

    No full text
    Here we report the results of an experimental study of the saturation dynamics and the optimal conditions for maximal radiation power extraction in a free electron laser (FEL) oscillator. The study was conducted on the Israeli electrostatic accelerator free electron laser (EA-FEL) that is capable of providing lasing pulses at frequencies between 95-110 GHz (depending on the electron beam energy). A critical parameter affecting the performance of the laser is the reflectivity and transmission of the out-coupling element of the resonator. Varying this parameter was made possible by attaching a remote-controlled variable reflectivity out-coupling element (based on a series of wire-grid polarizers) to the resonator of our EA-FEL. As in any laser oscillator the conditions for maximum power emission are the results of a balance between the counteracting effects of increased internal reflectivity (loaded) that enhances the stored energy as opposed to increasing the out-coupling coefficient (thereby reducing the reflectivity) in order to increase the portion of out-coupled power relative to internal loss. The power optimization conditions were studied by us for the case of an FEL oscillator along with optimization conditions for other performance parameters specific to FEL, such as maintaining fast single-mode establishment in the resonator and sustaining single-mode long lasing pulses
    corecore