1,937 research outputs found

    The Coulomb impurity problem in graphene

    Full text link
    We address the problem of an unscreened Coulomb charge in graphene, and calculate the local density of states and displaced charge as a function of energy and distance from the impurity. This is done non-perturbatively in two different ways: (1) solving the problem exactly by studying numerically the tight-binding model on the lattice; (2) using the continuum description in terms of the 2D Dirac equation. We show that the Dirac equation, when properly regularized, provides a qualitative and quantitative low energy description of the problem. The lattice solution shows extra features that cannot be described by the Dirac equation, namely bound state formation and strong renormalization of the van Hove singularities.Comment: 3 Figures; minor typo corrections and minor update in Fig. 3

    Disclinations, dislocations and continuous defects: a reappraisal

    Full text link
    Disclinations, first observed in mesomorphic phases, are relevant to a number of ill-ordered condensed matter media, with continuous symmetries or frustrated order. They also appear in polycrystals at the edges of grain boundaries. They are of limited interest in solid single crystals, where, owing to their large elastic stresses, they mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, change of shape, involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye's dislocation densities, well suited here. The notion of 'extended Volterra process' takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by applications in amorphous solids, mesomorphic phases and frustrated media in their curved habit space. The powerful topological theory of line defects only considers defects stable against relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, well suited for media of high plasticity or/and complex structures. Topological stability cannot guarantee energetic stability and sometimes cannot distinguish finer details of structure of defects.Comment: 72 pages, 36 figure

    Self-energy corrections to anisotropic Fermi surfaces

    Full text link
    The electron-electron interactions affect the low-energy excitations of an electronic system and induce deformations of the Fermi surface. These effects are especially important in anisotropic materials with strong correlations, such as copper oxides superconductors or ruthenates. Here we analyze the deformations produced by electronic correlations in the Fermi surface of anisotropic two-dimensional systems, treating the regular and singular regions of the Fermi surface on the same footing. Simple analytical expressions are obtained for the corrections, based on local features of the Fermi surface. It is shown that, even for weak local interactions, the behavior of the self-energy is non trivial, showing a momentum dependence and a self-consistent interplay with the Fermi surface topology. Results are compared to experimental observations and to other theoretical results.Comment: 13 pages, 10 figure

    Void-induced cross slip of screw dislocations in fcc copper

    Full text link
    Pinning interaction between a screw dislocation and a void in fcc copper is investigated by means of molecular dynamics simulation. A screw dislocation bows out to undergo depinning on the original glide plane at low temperatures, where the behavior of the depinning stress is consistent with that obtained by a continuum model. If the temperature is higher than 300 K, the motion of a screw dislocation is no longer restricted to a single glide plane due to cross slip on the void surface. Several depinning mechanisms that involve multiple glide planes are found. In particular, a depinning mechanism that produces an intrinsic prismatic loop is found. We show that these complex depinning mechanisms significantly increase the depinning stress

    The quantum smectic as a dislocation Higgs phase

    Get PDF
    The theory describing quantum-smectics in 2+1 dimensions, based on topological quantum melting is presented. This is governed by a dislocation condensate characterized by an ordering of Burger's vector and this `dual shear superconductor' manifests itself in the form of a novel spectrum of phonon-like modes.Comment: 5 pages, 3 figures; minor changes in the tex

    Tunnel magnetoresistance and interfacial electronic state

    Full text link
    We study the relation between tunnel magnetoresistance (TMR) and interfacial electronic states modified by magnetic impurities introduced at the interface of the ferromagnetic tunnel junctions, by making use of the periodic Anderson model and the linear response theory. It is indicated that the TMR ratio is strongly reduced depending on the position of the dd-levels of impurities, based on reduction in the spin-dependent ss-electron tunneling in the majority spin state. The results are compared with experimental results for Cr-dusted ferromagnetic tunnel junctions, and also with results for metallic multilayers for which similar reduction in giant magnetoresistance has been reported.Comment: 5 pages, 4 figures, 2 column revtex4 format, ICMFS 2002 (Kyoto

    Techniques to improve technological and sanitary quality

    Get PDF
    Agronomical ways for better quality and safety Choice of cultivar is an efficient way to obtain higher grain quality. Intercropping legumes (grain or forage) improves weed competition and N availability for wheat crop or succeeding crop. Green manure can be an effective alternative to farmyard manure. Fertilization with readily available nitrogen improves yield and quality when water is available. Reduced tillage affects soil fertility and wheat yield but has little effects on grain quality. Technological ways for better quality and safety Milling process strongly influences flour characteristics. Stone milling improves nutritive value; characteristics remain very stable independent of the milling yield. Flour characteristics from roller milling appear very susceptible to the milling yield. Increasing the milling yield in the aim of enriching nutritional quality has a detrimental effect either on safety (DON) or on bread-making quality (bread volume)

    Impact of light exposure on fruit composition of white 'Riesling' grape berries (Vitis vinifera L.)

    Get PDF
    Microclimate and irradiation have long been known to influence winegrape (Vitis vinifera) quality. However, microclimate influence on white grape quality has remained understudied, as most research efforts have focused on red varieties and their anthocyanin content. In this study, we investigated microclimatic effects on the phenolic and amino acid composition of white 'Riesling' grapes using bunch shading and leaf removal to manipulate grape microclimate. Both treatments were applied directly after fruit set (modified E‑L 27; (Coombe 1995)) as well as at the onset of veraison (E-L 34), and compared to a non-manipulated control. The concentration of malic acid, amino acids and total nitrogen were decreased by illumination during the berry growth, while content and concentration of phenolics were significantly increased by illumination. Strong negative correlations were observed between accumulation of amino acids and flavonols. Although accumulation of flavonols occurred throughout berry development, the most important phase of accumulation was post-veraison

    Technological quality of organic wheat in Europe

    Get PDF
    The demand for high quality organic bread wheat is increasing. The quality level of organic wheat harvested in EU is mainly dependant on variety, environmental conditions and agronomic practices. In some countries, protein content and composition, influencing technological value, are equivalent to those produced under conventional practices. Beside agronomical techniques, technological processes can help to maintain a good quality. Pre-treatments before milling such as debranning were found to be efficient in reducing DON contamination. The project highlighted the necessity to redefine the methods to assess the quality of organic wheat

    Coincidence isometries of a shifted square lattice

    Full text link
    We consider the coincidence problem for the square lattice that is translated by an arbitrary vector. General results are obtained about the set of coincidence isometries and the coincidence site lattices of a shifted square lattice by identifying the square lattice with the ring of Gaussian integers. To illustrate them, we calculate the set of coincidence isometries, as well as generating functions for the number of coincidence site lattices and coincidence isometries, for specific examples.Comment: 10 pages, 1 figure; paper presented at Aperiodic 2009 (Liverpool
    • …
    corecore