53 research outputs found

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    ΠŸΠ ΠΠšΠ’Π˜Π§Π•Π‘ΠšΠžΠ• ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π• Π˜ΠœΠŸΠ•Π”ΠΠΠ‘ΠΠžΠ™ Π Π•ΠžΠ“Π ΠΠ€Π˜Π˜ Π’ ΠšΠΠ Π”Π˜ΠžΠ›ΠžΠ“Π˜Π˜ – ΠΠžΠ’Π«Π• ΠŸΠžΠ”Π₯ΠžΠ”Π«

    No full text
    Background: The impedance rheocardiography is aΒ  simple, inexpensive, noninvasive method of assessment of central hemodynamics that can be used for detection of cardiovascular remodeling and thus promote an improvement of cardiovascular mortality. Modern mathematical methods of data management could help to discover new possibilities of rheographic signal analysis. Aim: To demonstrate the potential of aΒ  wavelet-analysis of rheocardiograms for identification of myocardial remodeling of patients with cardiovascular disorders. Materials and methods: The proposed method was validated in 12Β  healthy men aged from 20Β  to 25Β  years and 14Β  patients with arterial hypertension. We used aΒ  polyreocardiograph, which records simultaneously the impedance (ICG), the electrocardiogram (ECG) and the phonogram (PCG). The function of the cardiovascular system was assessed based on the two-dimensional time-frequency distributions of wavelet transformed coefficients of differential rheogram curves. Results: The results of an isometric load test confirm the adequacy of stroke volume estimation based on the amplitude of wavelet coefficients and the scale of the E wave. In this technique, ISTI parameter was defined as the time interval between the R wave in the ECG and the maximum of the E wave in the wavelet image. The simultaneous time-frequency analysis of both the pulse and respiratory component of an ICG signal can be aΒ basis for the development of complex functional respiratory tests. Conclusion: The approach proposed demonstrates the possibility to obtain the characteristics of the diastolic phase of the cardiac cycle, and allows for aΒ more precise determination of the stroke volume. Data management is done automatically. These advantages are expected to be used for producing aΒ mobile cardiograph for screening diagnostic.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. ИмпСдансная рСокардиография  – простой, Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΎΠΉ, Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ изучСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для выявлСния процСсса рСмодСлирования сСрдСчно-сосудистой систСмы ΠΈΒ  ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ сниТСнию смСртности ΠΎΡ‚ сСрдСчно-сосудистых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ матСматичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ возмоТности Π°Π½Π°Π»ΠΈΠ·Π° рСографичСских сигналов. ЦСль  – ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ возмоТности Π²Π΅ΠΉ- Π²Π»Π΅Ρ‚-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ рСографичСского сигнала для получСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎΒ  Ρ€Π΅ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с  сСрдСчно-сосудистыми заболСваниями. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈΒ  ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ обслСдованиС 12Β Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… ΠΌΡƒΠΆΡ‡ΠΈΠ½ в возрастС ΠΎΡ‚Β 20 Π΄ΠΎΒ 25Β Π»Π΅Ρ‚, ΡΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠΈΡ… Π³Ρ€ΡƒΠΏΠΏΡƒ контроля, ΠΈΒ  14Β  ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с  Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ гипСртоничСской Π±ΠΎΠ»Π΅Π·Π½ΠΈ. Использовался ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ»ΠΈΡ€Π΅ΠΎΠΊΠ°Ρ€Π΄ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, Π²Β  ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с  импСдансной Ρ€Π΅ΠΎΠΊΠ°Ρ€Π΄ΠΈΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠΉ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ элСктро- ΠΊΠ°Ρ€Π΄ΠΈΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΈΒ  Ρ„ΠΎΠ½ΠΎΠΊΠ°Ρ€Π΄ΠΈΠΎΠ³Ρ€Π°ΠΌΠΌΠ°. Π‘Ρ‹Π»Π° использована ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния сСрдСчно-сосудистой систСмы Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… частотно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… распрСдСлСний Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-коэффициСнтов прСобразования ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”Π°Π½Π½Ρ‹Π΅ Π½Π°Π³Ρ€ΡƒΠ·ΠΎΡ‡Π½ΠΎΠ³ΠΎ изомСтричСского тСста ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΡΡ‚ΡŒ опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ объСма Π½Π° основС Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-коэффициСнтов ΠΈΒ  ΠΌΠ°ΡΡˆΡ‚Π°Π±Π° Π•-Π²ΠΎΠ»Π½Ρ‹. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ ISTI Π²Β  Ρ€Π°ΠΌΠΊΠ°Ρ… этого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° опрСдСляСтся ΠΊΠ°ΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠ΅ΠΆΠ΄Ρƒ R-ΠΏΠΈΠΊΠΎΠΌ элСктрокардиограммы и максимумом Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-прСдставлСния Π•-Π²ΠΎΠ»Π½Ρ‹. ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΉ частотно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΠ°ΠΊ ΠΏΡƒΠ»ΡŒΡΠΎΠ²ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈΒ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ рСографичСского сигнала ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ основой для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ комплСкса Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… тСстов Π½Π° основС дыхания. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ получСния характСристик диастоличСской Ρ„Π°Π·Ρ‹ сСрдСчного Ρ†ΠΈΠΊΠ»Π° ΠΈΒ  позволяСт ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ объСма. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π²Β  автоматичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅. Π­Ρ‚ΠΈ прСимущСства прСдполагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ создании мобильного ΠΊΠ°Ρ€Π΄ΠΈΠΎΠ³Ρ€Π°Ρ„Π° для скрининговой диагностики.

    Deflections of cosmic rays in a random component of the galactic magnetic field

    No full text
    We express the mean square deflections of the ultra-high energy cosmic rays (UHECR) caused by the random component of the Galactic magnetic field (GMF) in terms of the GMF power spectrum. We use recent measurements of the GMF spectra in several sky patches to estimate the deflections quantitatively. We find that deflections due to the random field constitute 0.03-0.3 of the deflections which are due to the regular component and depend on the direction on the sky. They are small enough not to preclude the identification of UHECR sources, but large enough to be detected in the new generation of UHECR experiments. Β© 2005 Elsevier B.V. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore